15 resultados para DIAZO KETONES
em Universidad de Alicante
Resumo:
Inexpensive and commercially available nano-powder magnetite is an excellent catalyst for the addition of acid chlorides to internal and terminal alkynes, yielding the corresponding chlorovinyl ketones in good yields. The process has been applied to the synthesis of 5-chloro-4-arylcyclopent-2-enones, 3-aryl-1H-cyclopenta[a]naphthalen-1-ones, and (E)-3-alkylidene-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-ones, just by changing the nature of the starting acid chloride or the alkyne. All tested processes elapse with an acceptable or excellent regio- and stereo-selectivity. Moreover, the use of the iridium impregnated on magnetite catalyst permits the integration of the chloroacylation process with a second dehydrochlorination–annulation process to yield, in one-pot, 1-aryl-2,4-dialkylfurans in good yields, independently of the nature of the starting reagents, and including the heteroaromatic ones.
Resumo:
Complex [Os(η6-p-cymene)(OH)(IPr)]OTf is an efficient catalyst precursor for the α-alkylation of arylacetonitriles and methyl ketones with alcohols, which works with turnover frequencies between 675 and 176 h–1 for nitriles and between 194 and 28 h–1 for ketones.
Resumo:
Enantiomerically pure carbamate-monoprotected trans-cyclohexane-1,2-diamines are used as chiral organocatalysts for the addition of aryl ketones and acetone to nitroalkenes to give enantioenriched β-substituted γ-nitroketones. The reaction was performed in the presence of 3,4-dimethoxybenzoic acid as an additive, in chloroform as the solvent at room temperature, achieving enantioselectivities up to 96%. Theoretical calculations are used to justify the observed sense of the stereoinduction.
Resumo:
In this review, we consider the main processes for the asymmetric transfer hydrogenation of ketones from 2008 up today. The most effective organometallic compounds (derived from Ru, Rh, Ir, Fe, Os, Ni, Co, and Re) and chiral ligands (derived from amino alcohols, diamines, sulfur- and phosphorus-containing compounds, as well as heterocyclic systems) will be shown paying special attention to functionalized substrates, tandem reactions, processes under non-conventional conditions, supported catalysts, dynamic kinetic resolutions, the use of water as a green solvent, theoretical and experimental studies on reaction mechanisms, enzymatic processes, and finally applications to the total synthesis of biologically active organic molecules.
Resumo:
(Sa)-Binam-D-prolinamide (20 mol%), instead of (Sa)-binam-L-prolinamide, in combination with chloroacetic acid (100 mol%) is an efficient organocatalyst for the direct aldol reaction between α-keto esters as electrophiles and alkyl and α-functionalised ketones, under quasi solvent-free conditions, providing access to highly functionalised chiral quaternary γ-keto α-hydroxyesters with up to 92% ee.
Resumo:
The BINAM-sulfonyl polymeric organocatalysts was prepared by the AIBN-promoted copolymerization of BINAM-derived sulfonamide, styrene and divinylbenzebe. The polymer catalyzed the asymmetric aldol reaction of aliphatic ketones with aromatic aldehydes to give the aldol products in up to 83% yield and with up to 95% ee. The catalysts could be recovered upt to 6 times with only a slight decrease on its activity.
Resumo:
The lithiation, of the secondary chloride 2, catalyzed by binaphthyl derivatives, i.e. BINAM 4, BINOL 5, BINAP 6, H8-BINAP 7, Tol-BINAP 8, 2,2’-bis(pyrrolidin-1-yl)-1,1’-binaphthalene 9, and 2,2’-dimethyl-1,1’-binaphthalene 11, in the presence of different ketones has been studied, yielding the corresponding alcohol derivatives 3 and 12-16 in moderate to good yields. Binaphthyl derivative 11 has revealed to be very active as catalyst in the lithiation process at room temperature, and has allowed the preparation of the alcohol derivatives with enantioselectivities up to 50%.
Resumo:
Recoverable (Sa)-binam-l-prolinamide in combination with benzoic acid is used as catalysts in the direct aldol reaction between cycloalkyl, alkyl, and α-functionalized ketones and aldehydes under solvent-free reaction conditions. Three different methods are assayed: simple conventional magnetic stirring, magnetic stirring after previous dissolution in THF and evaporation, and ball mill technique. These procedures allow one to reduce not only the amount of required ketone to 2 equiv but also the reaction time to give the aldol products with regio-, diastereo-, and enantioselectivities comparable to those in organic or aqueous solvents. Generally anti-isomers are mainly obtained with enantioselectivities up to 97%. The reaction can be carried out under these conditions also using aldehydes as nucleophiles, yielding after in situ reduction of the aldol products the corresponding chiral 1,3-diols with moderate to high enantioselectivities mainly as anti-isomers. The aldol reaction has been studied by the use of positive ESI-MS technique, providing the evidence of the formation of the corresponding enamine−iminium intermediates.
Resumo:
N-Tosyl-(Sa)-binam-L-prolinamide is an efficient catalyst for the aqueous aldol reaction, between glyoxylic acid, as monohydrate or aqueous solution, and ketones. This reaction led to the formation of chiral α-hydroxy-γ-keto carboxylic acids in high levels of diastereo- and enantioselectivities achieving mainly anti aldol products.
Resumo:
Electron donor-acceptor (EDA) interactions are widely involved in chemistry and their understanding is essential to design new technological applications in a variety of fields ranging from material sciences and chemical engineering to medicine. In this work, we study EDA complexes of carbon dioxide with ketones using several ab initio and Density Functional Theory methods. Energy contributions to the interaction energy have been analyzed in detail using both variational and perturbational treatments. Dispersion energy has been shown to play a key role in explaining the high stability of a non-conventional structure, which can roughly be described by a cooperative EDA interaction.
Resumo:
Aqueous 2,2-dimethoxyacetaldehyde (60% wt solution) is used as an acceptor in aldol reactions, with cyclic and acyclic ketones and aldehydes as donors, organocatalyzed by 10 mol % of N-tosyl-(Sa)-binam-l-prolinamide [(Sa)-binam-sulfo-l-Pro] at rt under solvent-free conditions. The corresponding monoprotected 2-hydroxy-1,4-dicarbonyl compounds are obtained in good yields and with high levels of diastereo- and enantioselectivity mainly as anti-aldols. In the case of 4-substituted cyclohexanones a desymmetrization process takes place to mainly afford the anti,anti-aldols. 2,2-Dimethyl-1,3-dioxan-5-one allows the synthesis of a useful intermediate for the preparation of carbohydrates in higher yield, de and ee than with l-Pro as the organocatalyst.
Resumo:
N-Tosyl-(S a)-binam-l-prolinamide is an efficient catalyst for the aqueous aldol reaction between ketones and glyoxylic acid, as the monohydrate or as an aqueous solution, or a 50% toluene solution of ethyl glyoxylate. These reactions led to the formation of chiral α-hydroxy-γ-keto carboxylic acids and esters in high levels of diastereo- and enantioselectivities (up to 97% ee), providing mainly anti aldol products. Only cyclopentanone and cyclohexane-1,4-dione afforded an almost 1:1 mixture of the syn/anti-diastereoisomers; however, the reaction between 4-phenylcyclohexanone and ethyl glyoxylate gave the corresponding syn,syn-product as the major diastereoisomer.
Resumo:
The direct aldol reaction between methylglyoxal (40% aqueous solution) or phenylglyoxal monohydrate and ketones or aldehydes is catalyzed by N-tosyl-(S a)-binam-l-prolinamide to afford the corresponding chiral γ-oxo-β-hydroxy carbonyl compounds, mainly as anti isomers with enantioselectivities up to 97%.
Resumo:
BINAM-prolinamides are very efficient catalyst for the synthesis of non-protected and N-benzyl isatin derivatives by using an aldol reaction between ketones and isatins under solvent-free conditions. The results in terms of diastereo- and enantioselectivities are good, up to 99% de and 97% ee, and higher to those previously reported in the literature under similar reaction conditions. A high variation of the results is observed depending on the structure of the isatin and the ketone used in the process. While 90% of ee and 97% ee, respectively, is obtained by using (Ra)-BINAM-l-(bis)prolinamide as catalyst in the addition of cyclohexanone and α-methoxyacetone to free isatin, 90% ee is achieved for the reaction between N-benzyl isatin and acetone using N-tosyl BINAM-l-prolinamide as catalyst. This reaction is also carried out using a silica BINAM-l-prolinamide supported catalyst under solvent-free conditions, which can be reused up to five times giving similar results.
Resumo:
The organocatalytic activities of highly substituted proline esters obtained through asymmetric [3+2] cycloadditions of azomethine ylides derived from glycine iminoesters have been analyzed by 19F NMR and through kinetic isotope effects. Kinetic rate constants have been determined for unnatural proline esters incorporating different substituents. It has been found that exo-L and endo-L unnatural proline methyl esters yield opposite enantiomers in aldol reactions between cyclic ketones and aromatic aldehydes. The combined results reported in this study show subtle and remote effects that determine the organocatalytic behavior of these synthetic but readily available amino acid derivatives. These data can be used as design criteria for the development of new pyrrolidine-based organocatalysts.