7 resultados para Convergence And Extension

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The McCabe-Thiele method is a classical approximate graphical method for the conceptual design of binary distillation columns which is still widely used, mainly for didactical purposes, though it is also valuable for quick preliminary calculations. Nevertheless, no complete description of the method has been found and situations such as different thermal feed conditions, multiple feeds, possibilities to extract by-products or to add or remove heat, are not always considered. In the present work we provide a systematic analysis of such situations by developing the generalized equations for: a) the operating lines (OL) of each sector, and b) the changeover line that provides the connection between two consecutive trays of the corresponding sectors separated by a lateral stream of feed, product, or a heat removal or addition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Iterative Closest Point algorithm (ICP) is commonly used in engineering applications to solve the rigid registration problem of partially overlapped point sets which are pre-aligned with a coarse estimate of their relative positions. This iterative algorithm is applied in many areas such as the medicine for volumetric reconstruction of tomography data, in robotics to reconstruct surfaces or scenes using range sensor information, in industrial systems for quality control of manufactured objects or even in biology to study the structure and folding of proteins. One of the algorithm’s main problems is its high computational complexity (quadratic in the number of points with the non-optimized original variant) in a context where high density point sets, acquired by high resolution scanners, are processed. Many variants have been proposed in the literature whose goal is the performance improvement either by reducing the number of points or the required iterations or even enhancing the complexity of the most expensive phase: the closest neighbor search. In spite of decreasing its complexity, some of the variants tend to have a negative impact on the final registration precision or the convergence domain thus limiting the possible application scenarios. The goal of this work is the improvement of the algorithm’s computational cost so that a wider range of computationally demanding problems from among the ones described before can be addressed. For that purpose, an experimental and mathematical convergence analysis and validation of point-to-point distance metrics has been performed taking into account those distances with lower computational cost than the Euclidean one, which is used as the de facto standard for the algorithm’s implementations in the literature. In that analysis, the functioning of the algorithm in diverse topological spaces, characterized by different metrics, has been studied to check the convergence, efficacy and cost of the method in order to determine the one which offers the best results. Given that the distance calculation represents a significant part of the whole set of computations performed by the algorithm, it is expected that any reduction of that operation affects significantly and positively the overall performance of the method. As a result, a performance improvement has been achieved by the application of those reduced cost metrics whose quality in terms of convergence and error has been analyzed and validated experimentally as comparable with respect to the Euclidean distance using a heterogeneous set of objects, scenarios and initial situations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Phase equilibrium data regression is an unavoidable task necessary to obtain the appropriate values for any model to be used in separation equipment design for chemical process simulation and optimization. The accuracy of this process depends on different factors such as the experimental data quality, the selected model and the calculation algorithm. The present paper summarizes the results and conclusions achieved in our research on the capabilities and limitations of the existing GE models and about strategies that can be included in the correlation algorithms to improve the convergence and avoid inconsistencies. The NRTL model has been selected as a representative local composition model. New capabilities of this model, but also several relevant limitations, have been identified and some examples of the application of a modified NRTL equation have been discussed. Furthermore, a regression algorithm has been developed that allows for the advisable simultaneous regression of all the condensed phase equilibrium regions that are present in ternary systems at constant T and P. It includes specific strategies designed to avoid some of the pitfalls frequently found in commercial regression tools for phase equilibrium calculations. Most of the proposed strategies are based on the geometrical interpretation of the lowest common tangent plane equilibrium criterion, which allows an unambiguous comprehension of the behavior of the mixtures. The paper aims to show all the work as a whole in order to reveal the necessary efforts that must be devoted to overcome the difficulties that still exist in the phase equilibrium data regression problem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tuning compilations is the process of adjusting the values of a compiler options to improve some features of the final application. In this paper, a strategy based on the use of a genetic algorithm and a multi-objective scheme is proposed to deal with this task. Unlike previous works, we try to take advantage of the knowledge of this domain to provide a problem-specific genetic operation that improves both the speed of convergence and the quality of the results. The evaluation of the strategy is carried out by means of a case of study aimed to improve the performance of the well-known web server Apache. Experimental results show that a 7.5% of overall improvement can be achieved. Furthermore, the adaptive approach has shown an ability to markedly speed-up the convergence of the original strategy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Non-Fourier models of heat conduction are increasingly being considered in the modeling of microscale heat transfer in engineering and biomedical heat transfer problems. The dual-phase-lagging model, incorporating time lags in the heat flux and the temperature gradient, and some of its particular cases and approximations, result in heat conduction modeling equations in the form of delayed or hyperbolic partial differential equations. In this work, the application of difference schemes for the numerical solution of lagging models of heat conduction is considered. Numerical schemes for some DPL approximations are developed, characterizing their properties of convergence and stability. Examples of numerical computations are included.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Different non-Fourier models of heat conduction, that incorporate time lags in the heat flux and/or the temperature gradient, have been increasingly considered in the last years to model microscale heat transfer problems in engineering. Numerical schemes to obtain approximate solutions of constant coefficients lagging models of heat conduction have already been proposed. In this work, an explicit finite difference scheme for a model with coefficients variable in time is developed, and their properties of convergence and stability are studied. Numerical computations showing examples of applications of the scheme are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dual-phase-lagging (DPL) models constitute a family of non-Fourier models of heat conduction that allow for the presence of time lags in the heat flux and the temperature gradient. These lags may need to be considered when modeling microscale heat transfer, and thus DPL models have found application in the last years in a wide range of theoretical and technical heat transfer problems. Consequently, analytical solutions and methods for computing numerical approximations have been proposed for particular DPL models in different settings. In this work, a compact difference scheme for second order DPL models is developed, providing higher order precision than a previously proposed method. The scheme is shown to be unconditionally stable and convergent, and its accuracy is illustrated with numerical examples.