4 resultados para Computer vision teaching
em Universidad de Alicante
Resumo:
Machine vision is an important subject in computer science and engineering degrees. For laboratory experimentation, it is desirable to have a complete and easy-to-use tool. In this work we present a Java library, oriented to teaching computer vision. We have designed and built the library from the scratch with enfasis on readability and understanding rather than on efficiency. However, the library can also be used for research purposes. JavaVis is an open source Java library, oriented to the teaching of Computer Vision. It consists of a framework with several features that meet its demands. It has been designed to be easy to use: the user does not have to deal with internal structures or graphical interface, and should the student need to add a new algorithm it can be done simply enough. Once we sketch the library, we focus on the experience the student gets using this library in several computer vision courses. Our main goal is to find out whether the students understand what they are doing, that is, find out how much the library helps the student in grasping the basic concepts of computer vision. In the last four years we have conducted surveys to assess how much the students have improved their skills by using this library.
Resumo:
In this article, we present a new framework oriented to teach Computer Vision related subjects called JavaVis. It is a computer vision library divided in three main areas: 2D package is featured for classical computer vision processing; 3D package, which includes a complete 3D geometric toolset, is used for 3D vision computing; Desktop package comprises a tool for graphic designing and testing of new algorithms. JavaVis is designed to be easy to use, both for launching and testing existing algorithms and for developing new ones.
Resumo:
The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.
Resumo:
Objectives: To design and validate a questionnaire to measure visual symptoms related to exposure to computers in the workplace. Study Design and Setting: Our computer vision syndrome questionnaire (CVS-Q) was based on a literature review and validated through discussion with experts and performance of a pretest, pilot test, and retest. Content validity was evaluated by occupational health, optometry, and ophthalmology experts. Rasch analysis was used in the psychometric evaluation of the questionnaire. Criterion validity was determined by calculating the sensitivity and specificity, receiver operator characteristic curve, and cutoff point. Testeretest repeatability was tested using the intraclass correlation coefficient (ICC) and concordance by Cohen’s kappa (k). Results: The CVS-Q was developed with wide consensus among experts and was well accepted by the target group. It assesses the frequency and intensity of 16 symptoms using a single rating scale (symptom severity) that fits the Rasch rating scale model well. The questionnaire has sensitivity and specificity over 70% and achieved good testeretest repeatability both for the scores obtained [ICC 5 0.802; 95% confidence interval (CI): 0.673, 0.884] and CVS classification (k 5 0.612; 95% CI: 0.384, 0.839). Conclusion: The CVS-Q has acceptable psychometric properties, making it a valid and reliable tool to control the visual health of computer workers, and can potentially be used in clinical trials and outcome research.