1 resultado para Computer vision teaching
em CaltechTHESIS
Filtro por publicador
- Repository Napier (2)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (2)
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (30)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (50)
- Applied Math and Science Education Repository - Washington - USA (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (33)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (41)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (9)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (50)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (99)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (10)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (13)
- Digital Peer Publishing (6)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (27)
- DRUM (Digital Repository at the University of Maryland) (9)
- Duke University (1)
- Escola Superior de Educação de Paula Frassinetti (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (2)
- FUNDAJ - Fundação Joaquim Nabuco (3)
- Glasgow Theses Service (1)
- Helvia: Repositorio Institucional de la Universidad de Córdoba (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (3)
- Instituto Politécnico do Porto, Portugal (25)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (13)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (13)
- RDBU - Repositório Digital da Biblioteca da Unisinos (5)
- Repositório Aberto da Universidade Aberta de Portugal (2)
- Repositorio Académico de la Universidad Nacional de Costa Rica (3)
- Repositório Científico da Escola Superior de Enfermagem de Coimbra (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (7)
- Repositório da Produção Científica e Intelectual da Unicamp (1)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (51)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (2)
- Scielo Uruguai (1)
- Universidad de Alicante (25)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (44)
- Universidade do Minho (12)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (18)
- Universidade Metodista de São Paulo (2)
- Universita di Parma (1)
- Universitat de Girona, Spain (59)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (16)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (3)
- University of Michigan (5)
- University of Queensland eSpace - Australia (48)
- University of Southampton, United Kingdom (6)
- University of Washington (7)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (7)
Resumo:
Visual inputs to artificial and biological visual systems are often quantized: cameras accumulate photons from the visual world, and the brain receives action potentials from visual sensory neurons. Collecting more information quanta leads to a longer acquisition time and better performance. In many visual tasks, collecting a small number of quanta is sufficient to solve the task well. The ability to determine the right number of quanta is pivotal in situations where visual information is costly to obtain, such as photon-starved or time-critical environments. In these situations, conventional vision systems that always collect a fixed and large amount of information are infeasible. I develop a framework that judiciously determines the number of information quanta to observe based on the cost of observation and the requirement for accuracy. The framework implements the optimal speed versus accuracy tradeoff when two assumptions are met, namely that the task is fully specified probabilistically and constant over time. I also extend the framework to address scenarios that violate the assumptions. I deploy the framework to three recognition tasks: visual search (where both assumptions are satisfied), scotopic visual recognition (where the model is not specified), and visual discrimination with unknown stimulus onset (where the model is dynamic over time). Scotopic classification experiments suggest that the framework leads to dramatic improvement in photon-efficiency compared to conventional computer vision algorithms. Human psychophysics experiments confirmed that the framework provides a parsimonious and versatile explanation for human behavior under time pressure in both static and dynamic environments.