35 resultados para Ciencia de los Materiales e Ingeniería Metalúrgica
em Universidad de Alicante
Resumo:
Se han aplicado técnicas de análisis instrumental (FRX, DRX, ATR-IR, TG-ATD, SEM-EDX, MO) al estudio de fragmentos constructivos de época neolítica obtenidos de diferentes yacimientos de la Provincia de Alicante (España). La secuencia y el orden de aplicación de las técnicas se fija en función de las características y la cantidad disponible de cada muestra, estableciéndose con ello un protocolo de trabajo que se aplica siempre al resto de muestras, lo que nos permite comparar los resultados entre sí. El uso de dichas técnicas nos ha permitido la caracterización de los fragmentos constructivos, lo que nos ha llevado a conocer el grado de tecnología alcanzado por estas sociedades, sugiriéndonos que podíamos estar ante los inicios de la aplicación de la tecnología de la cal en esta zona de la Península Ibérica. En este trabajo se presenta una visión global de los resultados obtenidos hasta el momento.
Resumo:
En este trabajo se ponen de manifiesto las ventajas de la utilización de la Termogravimetría acoplada a Espectrometría de masas (TG-EM) y de la Espectrometría Infrarroja mediante Reflectancia Total atenuada (ATR-FTIR) frente a las técnicas usadas tradicionalmente de Termogravimetría (TG) y de Espectroscopia Infrarroja por Transformada de Fourier en modo transmisión (FTIR) en el estudio de materiales de construcción prehistóricos de diversos yacimientos de la Provincia de Alicante (España).
Resumo:
Amorphous carbon nanofibers (CNFs), produced by the polymer blend technique, are activated by CO2 (ACNFs). Monoliths are synthesized from the precursor and from some ACNFs. Morphology and textural properties of these materials are studied. When compared with other activating agents (steam and alkaline hydroxides), CO2 activation renders suitable yields and, contrarily to most other precursors, turns out to be advantageous for developing and controlling their narrow microporosity (< 0.7 nm), VDR(CO2). The obtained ACNFs have a high compressibility and, consequently, a high packing density under mechanical pressure which can also be maintained upon monolith synthesis. H2 adsorption is measured at two different conditions (77 K / 0.11 MPa, and 298 K / 20 MPa) and compared with other activated carbons. Under both conditions, H2 uptake depends on the narrow microporosity of the prepared ACNFs. Interestingly, at room temperature these ACNFs perform better than other activated carbons, despite their lower porosity developments. At 298 K they reach a H2 adsorption capacity as high as 1.3 wt.%, and a remarkable value of 1 wt.% in its mechanically resistant monolith form.
Resumo:
Análisis mediante diferentes técnicas instrumentales (ATR-IR, TG, MO, SEM, DRX, FRX, etc..) de un fragmento constructivo procedente de un yacimiento Neolítico-Mesolítico de Cantera Benàmer (Muro d'Alcoi, Alicante).
Resumo:
Análisis instrumental mediante diferentes técnicas (ATR-IR, DRX, TG, SEM, MO, FRX, etc..) del recubrimiento de la pared interna de dos estructuras negativas (silos)del yacimiento Neolítico-Mesolítico de Cantera Benàmer (Muro d'Alcoi, Alicante).
Resumo:
This paper deals with the stabilisation of low softening point pitch fibres obtained from petroleum pitches using HNO3 as oxidising agent. This method presents some advantages compared with conventional methods: pitches with low softening point (SP) can be used to prepare carbon fibres (CF), the stabilisation time has been reduced, the CF yields are similar to those obtained after general methods of stabilisation, and the initial treatments to increase SP when low SP pitches are used to prepare CF, are avoided. The parent pitches were characterised by different techniques such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), elemental analysis and solvent extraction with toluene and quinoline. The interaction between HNO3 and the pitch fibres, as well as the changes occurring during the heat treatment, have been followed by DRIFTS.
Resumo:
Results show that it is possible to activate a low softening point isotropic petroleum pitch, without intermediate pre-treatments, by chemical activation with KOH. The chemical activation is carried out by direct heat treatment of a mixture of the isotropic pitch and KOH. It produces activated carbons (ACs) with micropore volumes as high as 1.12 cm3/g, and BET surface areas around 3000 m2/g. The activating agent/precursor ratios studied (from 1/1 to 4/1; wt./wt.) show, as expected, that increasing the ratio enhances the adsorption characteristics of the resulting AC.
Resumo:
The changes in mechanical properties of portland cement mortars due to the addition of carbon fibres (CF) to the mix have been studied. Compression and flexural strengths have been determined in relation to the amount of fibres added to the mix, water/binder ratio, curing time and porosity. Additionally, the corrosion level of reinforcing steel bars embedded in portland cement mortars containing CF and silica fume (SF) have also been investigated and reinforcing steel corrosion rates have been determined. As a consequence of the large concentration of oxygen groups in CF surface, a good interaction between the CF and the water of the mortar paste is to be expected. A CF content of 0.5% of cement weight implies an optimum increase in flexural strength and an increase in embedded steel corrosion.
Resumo:
Activated carbon fibre monoliths were prepared by physical activation of carbon fibre monoliths derived from two kinds of pitch-based carbon fibre (CF) (carbon fibres from a coal tar pitch and carbon fibres derived from a petroleum pitch). The monoliths were conformed using a coal tar pitch binder. The carbon fibre monoliths and the activated carbon fibre monoliths were studied by scanning electron microscopy (SEM) and gas adsorption (i.e. N2 at 77 K and CO2 at 273 K). The results obtained reveal that monoliths perform a good activation process that produce a quite high development of microporosity (BET surface areas around 2600 m2/g and N2 micropore volume of 1.23 cm3/g). On the other hand, it is remarkable that the activation process used allow to easily control the degree of activation and hence to select the adsorption capacities of the activated carbon fibre monoliths.
Resumo:
A method using iodine has been developed for the stabilisation of low softening point (SP) pitch fibres that avoids air stabilisation in the production of carbon fibres (CF). The interaction between iodine and petroleum pitches has been studied by following the changes in the hydrogen content, aromatic or aliphatic, during the heat treatment of iodine-treated pitch fibres. Two low SP petroleum pitches were used and the iodine-treated pitch fibres were analysed by TGA, DSC, DRIFT, XPS and SEM. The results confirm that using this novel method pitches with low SP can be used to prepare CF with two advantages, compared with conventional methods. The stabilisation time is considerably reduced and treatments to increase the SP, usually required when low SP pitches are used to prepare CF, can be avoided.
Resumo:
In the present work we study the hydroxide activation (NaOH and KOH) of phenol-formaldehyde resin derived CNFs prepared by a polymer blend technique to prepare highly porous activated carbon nanofibres (ACNFs). Morphology and textural characteristics of these ACNFs were studied and their hydrogen storage capacities at 77 K (at 0.1 MPa and at high pressures up to 4 MPa) were assessed, and compared, with reported capacities of other porous carbon materials. Phenol-formaldehyde resin derived carbon fibres were successfully activated with these two alkaline hydroxides rendering highly microporous ACNFs with reasonable good activation process yields up to 47 wt.% compared to 7 wt.% yields from steam activation for similar surface areas of 1500 m2/g or higher. These nano-sized activated carbons present interesting H2 storage capacities at 77 K which are comparable, or even higher, to other high quality microporous carbon materials. This observation is due, in part, to their nano-sized diameters allowing to enhance their packing densities to 0.71 g/cm3 and hence their resulting hydrogen storage capacities.
Resumo:
The paper provides interesting evidences that a low softening point isotropic petroleum pitch can be used as a good carbon precursor for the preparation of activated carbons. The activation is carried out by KOH and/or NaOH and the resulting activated carbons present well developed porosity. Such hydroxide activations can be done directly on the pristine petroleum pitch (P) or on the pitch that has been submitted to an air stabilisation followed by a N2 heat treatment (TAN). In general, KOH activation produces better results than NaOH, both in terms of porosity and yield, the results obtained for the activation of TAN being impressive because of the good porosity developments and high yields reached. The different treatments carried out over the petroleum pitch precursor clearly show that they significantly influence the extent of microporosity development. This is due to different changes occurring in the porous structure of the precursor as a function of the treatment carried out. The efficiency of the activation process increases as the mesophase content of the precursor decreases, as well as the mesophase formation during the activation process is avoided.
Resumo:
En este artículo se presentan datos experimentales de resistencia a flexión y a compresión de morteros de cemento Portland con adición y sustitución de breas de petróleo y de alquitrán de carbón, que son subproductos de la industria del carbón o del petróleo. Los materiales estudiados son breas de alquitrán de carbón A (BACA) y B (BACB), y dos breas de petróleo (BPP) y (BPT). Los datos demuestran la viabilidad del uso de estas breas en la fabricación de morteros con menores contenidos de cemento, permitiendo diseñar un nuevo material sostenible con el medio ambiente y que contribuya a reducir el impacto ambiental de los materiales de construcción, hecho que permite abrir una nueva vía de valorización de estos subproductos.
Resumo:
The stabilisation of pitch fibres (PFs) is the most important step for their subsequent use in the preparation of carbon fibres (CFs) and their resulting characteristics. The present work studies the influence that the stabilisation time has on the porosity of the CFs, and on the subsequent properties as carbon molecular sieve (CMS). The increase of the stabilisation time carried out at 573 K, from 2 to 8 h favours their CMS properties producing a decrease in the microposity accessible to N2, which gets completely blocked after 6 and 8 h, while the narrow microporosity (V-DR CO2) remains accessible. Adsorption kinetic studies with CH4 and CO2 were performed to assess the possibility of using these CFs as CMS by comparing them with Takeda 3A CMS. The results suggest that there is an optimal stabilisation time which allows the preparation of CFs from an abundant raw precursor with properties similar to Takeda 3A CMS.
Resumo:
In the literature, different approaches, terminologies, concepts and equations are used for calculating gas storage capacities. Very often, these approaches are not well defined, used and/or determined, giving rise to significant misconceptions. Even more, some of these approaches, very much associated with the type of adsorbent material used (e.g., porous carbons or new materials such as COFs and MOFs), impede a suitable comparison of their performances for gas storage applications. We review and present the set of equations used to assess the total storage capacity for which, contrarily to the absolute adsorption assessment, all its experimental variables can be determined experimentally without assumptions, ensuring the comparison of different porous storage materials for practical application. These material-based total storage capacities are calculated by taking into account the excess adsorption, the bulk density (ρbulk) and the true density (ρtrue) of the adsorbent. The impact of the material densities on the results are investigated for an exemplary hydrogen isotherm obtained at room temperature and up to 20 MPa. It turns out that the total storage capacity on a volumetric basis, which increases with both, ρbulk and ρtrue, is the most appropriate tool for comparing the performance of storage materials. However, the use of the total storage capacities on a gravimetric basis cannot be recommended, because low material bulk densities could lead to unrealistically high gravimetric values.