4 resultados para Affine homography
em Universidad de Alicante
Resumo:
The methodology “b-learning” is a new teaching scenario and it requires the creation, adaptation and application of new learning tools searching the assimilation of new collaborative competences. In this context, it is well known the knowledge spirals, the situational leadership and the informal learning. The knowledge spirals is a basic concept of the knowledge procedure and they are based on that the knowledge increases when a cycle of 4 phases is repeated successively.1) The knowledge is created (for instance, to have an idea); 2) The knowledge is decoded into a format to be easily transmitted; 3) The knowledge is modified to be easily comprehensive and it is used; 4) New knowledge is created. This new knowledge improves the previous one (step 1). Each cycle shows a step of a spiral staircase: by going up the staircase, more knowledge is created. On the other hand, the situational leadership is based on that each person has a maturity degree to develop a specific task and this maturity increases with the experience. Therefore, the teacher (leader) has to adapt the teaching style to the student (subordinate) requirements and in this way, the professional and personal development of the student will increase quickly by improving the results and satisfaction. This educational strategy, finally combined with the informal learning, and in particular the zone of proximal development, and using a learning content management system own in our University, gets a successful and well-evaluated learning activity in Master subjects focused on the collaborative activity of preparation and oral exhibition of short and specific topics affine to these subjects. Therefore, the teacher has a relevant and consultant role of the selected topic and his function is to guide and supervise the work, incorporating many times the previous works done in other courses, as a research tutor or more experienced student. Then, in this work, we show the academic results, grade of interactivity developed in these collaborative tasks, statistics and the satisfaction grade shown by our post-graduate students.
Resumo:
This paper is intended to provide conditions for the stability of the strong uniqueness of the optimal solution of a given linear semi-infinite optimization (LSIO) problem, in the sense of maintaining the strong uniqueness property under sufficiently small perturbations of all the data. We consider LSIO problems such that the family of gradients of all the constraints is unbounded, extending earlier results of Nürnberger for continuous LSIO problems, and of Helbig and Todorov for LSIO problems with bounded set of gradients. To do this we characterize the absolutely (affinely) stable problems, i.e., those LSIO problems whose feasible set (its affine hull, respectively) remains constant under sufficiently small perturbations.
Resumo:
The multiobjective optimization model studied in this paper deals with simultaneous minimization of finitely many linear functions subject to an arbitrary number of uncertain linear constraints. We first provide a radius of robust feasibility guaranteeing the feasibility of the robust counterpart under affine data parametrization. We then establish dual characterizations of robust solutions of our model that are immunized against data uncertainty by way of characterizing corresponding solutions of robust counterpart of the model. Consequently, we present robust duality theorems relating the value of the robust model with the corresponding value of its dual problem.
Resumo:
In this paper we examine multi-objective linear programming problems in the face of data uncertainty both in the objective function and the constraints. First, we derive a formula for the radius of robust feasibility guaranteeing constraint feasibility for all possible scenarios within a specified uncertainty set under affine data parametrization. We then present numerically tractable optimality conditions for minmax robust weakly efficient solutions, i.e., the weakly efficient solutions of the robust counterpart. We also consider highly robust weakly efficient solutions, i.e., robust feasible solutions which are weakly efficient for any possible instance of the objective matrix within a specified uncertainty set, providing lower bounds for the radius of highly robust efficiency guaranteeing the existence of this type of solutions under affine and rank-1 objective data uncertainty. Finally, we provide numerically tractable optimality conditions for highly robust weakly efficient solutions.