On stable uniqueness in linear semi-infinite optimization


Autoria(s): Goberna, Miguel A.; Todorov, Maxim I.; Vera de Serio, Virginia N.
Contribuinte(s)

Universidad de Alicante. Departamento de Estadística e Investigación Operativa

Laboratorio de Optimización (LOPT)

Data(s)

06/03/2014

06/03/2014

01/06/2012

Resumo

This paper is intended to provide conditions for the stability of the strong uniqueness of the optimal solution of a given linear semi-infinite optimization (LSIO) problem, in the sense of maintaining the strong uniqueness property under sufficiently small perturbations of all the data. We consider LSIO problems such that the family of gradients of all the constraints is unbounded, extending earlier results of Nürnberger for continuous LSIO problems, and of Helbig and Todorov for LSIO problems with bounded set of gradients. To do this we characterize the absolutely (affinely) stable problems, i.e., those LSIO problems whose feasible set (its affine hull, respectively) remains constant under sufficiently small perturbations.

This work has been supported by MICINN of Spain, Grant MTM2008-06695-C03-01/03, by Generalitat Valenciana, by CONACyT of MX, Grant 55681, and by SECTyP-UNCuyo Res. 882/07-R.

Identificador

Journal of Global Optimization. 2012, 53(2): 347-361. doi:10.1007/s10898-011-9768-0

0925-5001 (Print)

1573-2916 (Online)

http://hdl.handle.net/10045/35900

10.1007/s10898-011-9768-0

Idioma(s)

eng

Publicador

Springer Science+Business Media, LLC

Relação

http://dx.doi.org/10.1007/s10898-011-9768-0

Direitos

The original publication is available at www.springerlink.com

info:eu-repo/semantics/restrictedAccess

Palavras-Chave #Linear semi-infinite optimization #Stable strong uniqueness #Nürnberger condition #Affine stability #Absolute stability #Estadística e Investigación Operativa
Tipo

info:eu-repo/semantics/article