14 resultados para “Hybrid” implementation model
em Universidad de Alicante
Resumo:
In this paper a new technique for partial product reduction based on the use of look-up tables for efficient processing is presented. We describe how to construct counter devices with pre-calculated data and their subsequent integration into the whole operation. The development of reduction trees organizations for this kind of devices uses the inherent integration benefits of computer memories and offers an alternative implementation to classic operation methods. Therefore, in our experiments we compare our implementation model with CMOS technology model in homogeneous terms.
Resumo:
Self-organising neural models have the ability to provide a good representation of the input space. In particular the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time-consuming, especially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This paper proposes a Graphics Processing Unit (GPU) parallel implementation of the GNG with Compute Unified Device Architecture (CUDA). In contrast to existing algorithms, the proposed GPU implementation allows the acceleration of the learning process keeping a good quality of representation. Comparative experiments using iterative, parallel and hybrid implementations are carried out to demonstrate the effectiveness of CUDA implementation. The results show that GNG learning with the proposed implementation achieves a speed-up of 6× compared with the single-threaded CPU implementation. GPU implementation has also been applied to a real application with time constraints: acceleration of 3D scene reconstruction for egomotion, in order to validate the proposal.
Resumo:
Virtual Worlds Generator is a grammatical model that is proposed to define virtual worlds. It integrates the diversity of sensors and interaction devices, multimodality and a virtual simulation system. Its grammar allows the definition and abstraction in symbols strings of the scenes of the virtual world, independently of the hardware that is used to represent the world or to interact with it. A case study is presented to explain how to use the proposed model to formalize a robot navigation system with multimodal perception and a hybrid control scheme of the robot.
Resumo:
For many years, humans and machines have shared the same physical space. To facilitate their interaction with humans, their social integration and for more rational behavior has been sought that the robots demonstrate human-like behavior. For this it is necessary to understand how human behavior is generated, discuss what tasks are performed and how relate to themselves, for subsequent implementation in robots. In this paper, we propose a model of competencies based on human neuroregulator system for analysis and decomposition of behavior into functional modules. Using this model allow separate and locate the tasks to be implemented in a robot that displays human-like behavior. As an example, we show the application of model to the autonomous movement behavior on unfamiliar environments and its implementation in various simulated and real robots with different physical configurations and physical devices of different nature. The main result of this work has been to build a model of competencies that is being used to build robotic systems capable of displaying behaviors similar to humans and consider the specific characteristics of robots.
Resumo:
In this paper we describe an hybrid algorithm for an even number of processors based on an algorithm for two processors and the Overlapping Partition Method for tridiagonal systems. Moreover, we compare this hybrid method with the Partition Wang’s method in a BSP computer. Finally, we compare the theoretical computation cost of both methods for a Cray T3D computer, using the cost model that BSP model provides.
Resumo:
A parallel algorithm for image noise removal is proposed. The algorithm is based on peer group concept and uses a fuzzy metric. An optimization study on the use of the CUDA platform to remove impulsive noise using this algorithm is presented. Moreover, an implementation of the algorithm on multi-core platforms using OpenMP is presented. Performance is evaluated in terms of execution time and a comparison of the implementation parallelised in multi-core, GPUs and the combination of both is conducted. A performance analysis with large images is conducted in order to identify the amount of pixels to allocate in the CPU and GPU. The observed time shows that both devices must have work to do, leaving the most to the GPU. Results show that parallel implementations of denoising filters on GPUs and multi-cores are very advisable, and they open the door to use such algorithms for real-time processing.
Resumo:
In this paper we describe Fénix, a data model for exchanging information between Natural Language Processing applications. The format proposed is intended to be flexible enough to cover both current and future data structures employed in the field of Computational Linguistics. The Fénix architecture is divided into four separate layers: conceptual, logical, persistence and physical. This division provides a simple interface to abstract the users from low-level implementation details, such as programming languages and data storage employed, allowing them to focus in the concepts and processes to be modelled. The Fénix architecture is accompanied by a set of programming libraries to facilitate the access and manipulation of the structures created in this framework. We will also show how this architecture has been already successfully applied in different research projects.
Resumo:
In this work, we present a systematic method for the optimal development of bioprocesses that relies on the combined use of simulation packages and optimization tools. One of the main advantages of our method is that it allows for the simultaneous optimization of all the individual components of a bioprocess, including the main upstream and downstream units. The design task is mathematically formulated as a mixed-integer dynamic optimization (MIDO) problem, which is solved by a decomposition method that iterates between primal and master sub-problems. The primal dynamic optimization problem optimizes the operating conditions, bioreactor kinetics and equipment sizes, whereas the master levels entails the solution of a tailored mixed-integer linear programming (MILP) model that decides on the values of the integer variables (i.e., number of equipments in parallel and topological decisions). The dynamic optimization primal sub-problems are solved via a sequential approach that integrates the process simulator SuperPro Designer® with an external NLP solver implemented in Matlab®. The capabilities of the proposed methodology are illustrated through its application to a typical fermentation process and to the production of the amino acid L-lysine.
Resumo:
Humans and machines have shared the same physical space for many years. To share the same space, we want the robots to behave like human beings. This will facilitate their social integration, their interaction with humans and create an intelligent behavior. To achieve this goal, we need to understand how human behavior is generated, analyze tasks running our nerves and how they relate to them. Then and only then can we implement these mechanisms in robotic beings. In this study, we propose a model of competencies based on human neuroregulator system for analysis and decomposition of behavior into functional modules. Using this model allow separate and locate the tasks to be implemented in a robot that displays human-like behavior. As an example, we show the application of model to the autonomous movement behavior on unfamiliar environments and its implementation in various simulated and real robots with different physical configurations and physical devices of different nature. The main result of this study has been to build a model of competencies that is being used to build robotic systems capable of displaying behaviors similar to humans and consider the specific characteristics of robots.
Resumo:
In this paper, we propose a novel algorithm for the rigorous design of distillation columns that integrates a process simulator in a generalized disjunctive programming formulation. The optimal distillation column, or column sequence, is obtained by selecting, for each column section, among a set of column sections with different number of theoretical trays. The selection of thermodynamic models, properties estimation etc., are all in the simulation environment. All the numerical issues related to the convergence of distillation columns (or column sections) are also maintained in the simulation environment. The model is formulated as a Generalized Disjunctive Programming (GDP) problem and solved using the logic based outer approximation algorithm without MINLP reformulation. Some examples involving from a single column to thermally coupled sequence or extractive distillation shows the performance of the new algorithm.
Resumo:
The continuous improvement of management and assessment processes for curricular external internships has led a group of university teachers specialised in this area to develop a mixed model of measurement that combines the verification of skill acquisition by those students choosing external internships with the satisfaction of the parties involved in that process. They included academics, educational tutors of companies and organisations and administration and services personnel in the latter category. The experience, developed within University of Alicante, has been carried out in the degrees of Business Administration and Management, Business Studies, Economics, Advertising and Public Relations, Sociology and Social Work, all part of the Faculty of Economics and Business. By designing and managing closed standardised interviews and other research tools, validated outside the centre, a system of continuous improvement and quality assurance has been created, clearly contributing to the gradual increase in the number of students with internships in this Faculty, as well as to the improvement in satisfaction, efficiency and efficacy indicators at a global level. As this experience of educational innovation has shown, the acquisition of curricular knowledge, skills, abilities and competences by the students is directly correlated with the satisfaction of those parties involved in a process that takes the student beyond the physical borders of a university campus. Ensuring the latter is a task made easier by the implementation of a mixed assessment method, combining continuous and final assessment, and characterised by its rigorousness and simple management. This report presents that model, subject in turn to a persistent and continuous control, a model all parties involved in the external internships are taking part of. Its short-term results imply an increase, estimated at 15% for the last course, in the number of students choosing curricular internships and, for the medium and long-term, a major interweaving between the academic world and its social and productive environment, both in the business and institutional areas. The potentiality of this assessment model does not lie only in the quality of its measurement tools, but also in the effects from its use in the various groups and in the actions that are carried out as a result of its implementation and which, without any doubt and as it is shown below, are the real guarantee of a continuous improvement.
Resumo:
Multiobjective Generalized Disjunctive Programming (MO-GDP) optimization has been used for the synthesis of an important industrial process, isobutane alkylation. The two objective functions to be simultaneously optimized are the environmental impact, determined by means of LCA (Life Cycle Assessment), and the economic potential of the process. The main reason for including the minimization of the environmental impact in the optimization process is the widespread environmental concern by the general public. For the resolution of the problem we employed a hybrid simulation- optimization methodology, i.e., the superstructure of the process was developed directly in a chemical process simulator connected to a state of the art optimizer. The model was formulated as a GDP and solved using a logic algorithm that avoids the reformulation as MINLP -Mixed Integer Non Linear Programming-. Our research gave us Pareto curves compounded by three different configurations where the LCA has been assessed by two different parameters: global warming potential and ecoindicator-99.
Resumo:
This paper proposes the implementation of different non-local Planetary Boundary Layer schemes within the Regional Atmospheric Modeling System (RAMS) model. The two selected PBL parameterizations are the Medium-Range Forecast (MRF) PBL and its updated version, known as the Yonsei University (YSU) PBL. YSU is a first-order scheme that uses non-local eddy diffusivity coefficients to compute turbulent fluxes. It is based on the MRF, and improves it with an explicit treatment of the entrainment. With the aim of evaluating the RAMS results for these PBL parameterizations, a series of numerical simulations have been performed and contrasted with the results obtained using the Mellor and Yamada (MY) scheme, also widely used, and the standard PBL scheme in the RAMS model. The numerical study carried out here is focused on mesoscale circulation events during the summer, as these meteorological situations dominate this season of the year in the Western Mediterranean coast. In addition, the sensitivity of these PBL parameterizations to the initial soil moisture content is also evaluated. The results show a warmer and moister PBL for the YSU scheme compared to both MRF and MY. The model presents as well a tendency to overestimate the observed temperature and to underestimate the observed humidity, considering all PBL schemes and a low initial soil moisture content. In addition, the bias between the model and the observations is significantly reduced moistening the initial soil moisture of the corresponding run. Thus, varying this parameter has a positive effect and improves the simulated results in relation to the observations. However, there is still a significant overestimation of the wind speed over flatter terrain, independently of the PBL scheme and the initial soil moisture used, even though a different degree of accuracy is reproduced by RAMS taking into account the different sensitivity tests.
Resumo:
The majority of the organizations store their historical business information in data warehouses which are queried to make strategic decisions by using online analytical processing (OLAP) tools. This information has to be correctly assured against unauthorized accesses, but nevertheless there are a great amount of legacy OLAP applications that have been developed without considering security aspects or these have been incorporated once the system was implemented. This work defines a reverse engineering process that allows us to obtain the conceptual model corresponding to a legacy OLAP application, and also analyses and represents the security aspects that could have established. This process has been aligned with a model-driven architecture for developing secure OLAP applications by defining the transformations needed to automatically apply it. Once the conceptual model has been extracted, it can be easily modified and improved with security, and automatically transformed to generate the new implementation.