136 resultados para Electroquímica.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of nitrogenated carbon nanotubes (N-CNTs) with up to 6.1 wt% N, via the use of pyridine as the nitrogen containing carbon precursor, can provide a facile route to significantly enhance the low intrinsic specific capacitance of carbon nanotubes. The nitrogen functionalities determine this, at least, five-fold increase of the specific capacitance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In situ Raman spectroscopy was exploited to analyze the interaction between carbon and hydrogen during electrochemical hydrogen storage at cathodic conditions. Two different activated carbons were used and characterized by different electrochemical techniques in two electrolytes (6 M KOH and 0.5 M Na2SO4). The in situ Raman spectra collected showed that, in addition to the D and G bands associated to the graphitic carbons, two bands appear simultaneously at about 1110 and 1500 cm−1 under cathodic conditions, and then they disappear when the potential increases to more positive values. This indicates that carbon–hydrogen bonds are formed reversibly in both electrolytes during cathodic conditions. Comparing the two activated carbons, it was confirmed that, in both electrolytes, the hydrogenation of carbon atoms is produced more easily for the sample with lower amount of surface oxygen groups. In KOH medium, for the two samples, the formation of carbon–hydrogen bonds proceeds at more positive potential with respect to the thermodynamic potential value for hydrogen evolution. Furthermore, changes in the shape of the D band (due to an intensity increase of the D1 band) during the formation of carbon–hydrogen bonds suggest that hydrogenation of the carbon atoms increases the number of edge planes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a systematic study of the effect of the electrochemical treatment (galvanostatic electrolysis in a filter-press electrochemical cell) on the surface chemistry and porous texture of commercial activated carbon cloth. The same treatments have been conducted over a granular activated carbon in order to clarify the effect of morphology. The influence of different electrochemical variables, such as the electrode polarity (anodic or cathodic), the applied current (between 0.2 and 1.0 A) and the type of electrolyte (HNO3 and NaCl) have also been analyzed. The anodic treatment of both activated carbons causes an increase in the amount of surface oxygen groups, whereas the cathodic treatment does not produce any relevant modification of the surface chemistry. The HNO3 electrolyte produced a lower generation of oxygen groups than the NaCl one, but differences in the achieved distribution of surface groups can be benefitial to selectively tune the surface chemistry. The porous texture seems to be unaltered after the electro-oxidation treatment. The validity of this method to introduce surface oxygen groups with a pseudocapacitive behavior has been corroborated by cyclic voltammetry. As a conclusion, the electrochemical treatment can be easily implemented to selectively and quantitatively modify the surface chemistry of activated carbons with different shapes and morphologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present communication studies the adsorption of aniline on platinum single crystal electrodes and the electrochemical properties of the first layers of polyaniline(PANI) grown on those platinum surfaces. The adsorption process was studied in aqueous acidic solution (0.1 M HClO4) and the electrochemical properties of thin films of PANI in both aqueous (1 M HClO4) and non-aqueous media (tetrabutyl ammonium hexafluorophosphate (TBAPF6) with additions of methanesulphonic acid in acetonitrile). First of all, it was found that the adsorption of aniline on platinum single crystal surfaces is a surface sensitive process, and even more important that the adsorption features found at low concentrations (5 × 10−5 M) can be directly correlated to the electrochemical properties of thin films of PANI in the very early stages of polymerization. The Pt(1 1 0) surface was found to be more suitable to obtain polymers with more reversible redox transitions when studied in aqueous media (1 M HClO4). This is in good agreement with the higher polymerization rates found on this surface compared to Pt(1 0 0) and Pt(1 1 1). Finally the differences in ionic exchange rate were greatly enhanced when they were studied in organic media. The AC 250 Hz response in the case of the thin films synthesized on Pt(1 1 0) is about twice greater than that obtained in the other basal planes using polymer layers with the same thickness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Possible drawbacks of microreactors are inefficient reactant mixing and the clogging of microchannels when solid-forming reactions are carried out or solid (catalysts) suspensions are used. Ultrasonic irradiation has been successfully implemented for solving these problems in microreactor configurations ranging from capillaries immersed in ultrasonic baths to devices with miniaturized piezoelectric transducers. Moving forward in process intensification and sustainable development, the acoustic energy implementation requires a strategy to optimize the microreactor from an ultrasound viewpoint during its design. In this work, we present a simple analytical model that can be used as a guide to achieving a proper acoustic design of stacked microreactors. An example of this methodology was demonstrated through finite element analysis and it was compared with an experimental study found in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pt–Pd bimetallic nanoparticles supported on graphene oxide (GO) nanosheets were prepared by a sonochemical reduction method in the presence of polyethylene glycol as a stabilizing agent. The synthetic method allowed for a fine tuning of the particle composition without significant changes in their size and degree of aggregation. Detailed characterization of GO-supported Pt–Pd catalysts was carried out by transmission electron microscopy (TEM), AFM, XPS, and electrochemical techniques. Uniform deposition of Pt–Pd nanoparticles with an average diameter of 3 nm was achieved on graphene nanosheets using a novel dual-frequency sonication approach. GO-supported bimetallic catalyst showed significant electrocatalytic activity for methanol oxidation. The influence of different molar compositions of Pt and Pd (1:1, 2:1, and 3:1) on the methanol oxidation efficiency was also evaluated. Among the different Pt/Pd ratios, the 1:1 ratio material showed the lowest onset potential and generated the highest peak current density. The effect of catalyst loading on carbon paper (working electrode) was also studied. Increasing the catalyst loading beyond a certain amount lowered the catalytic activity due to the aggregation of metal particle-loaded GO nanosheets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We quantify the rate and efficiency of picosecond electron transfer (ET) from PbS nanocrystals, grown by successive ionic layer adsorption and reaction (SILAR), into a mesoporous SnO2 support. Successive SILAR deposition steps allow for stoichiometry- and size-variation of the QDs, characterized using transmission electron microscopy. Whereas for sulfur-rich (p-type) QD surfaces substantial electron trapping at the QD surface occurs, for lead-rich (n-type) QD surfaces, the QD trapping channel is suppressed and the ET efficiency is boosted. The ET efficiency increase achieved by lead-rich QD surfaces is found to be QD-size dependent, increasing linearly with QD surface area. On the other hand, ET rates are found to be independent of both QD size and surface stoichiometry, suggesting that the donor–acceptor energetics (constituting the driving force for ET) are fixed due to Fermi level pinning at the QD/oxide interface. Implications of our results for QD-sensitized solar cell design are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic properties of hematite were investigated by means of synchrotron radiation photoemission (SR-PES) and X-ray absorption spectroscopy (XAS). Hematite samples were exposed to trimethyl aluminum (TMA) pulses, a widely used Al-precursor for the atomic layer deposition (ALD) of Al2O3. SR-PES and XAS showed that the electronic properties of hematite were modified by the interaction with TMA. In particular, the hybridization of O 2p states with Fe 3d and Fe 4s4p changed upon TMA pulses due to electron inclusion as polarons. The change of hybridization correlates with an enhancement of the photocurrent density due to water oxidation for the hematite electrodes. Such an enhancement has been associated with an improvement in charge carrier transport. Our findings open new perspectives for the understanding and utilization of electrode modifications by very thin ALD films and show that the interactions between metal precursors and substrates seem to be important factors in defining their electronic and photoelectrocatalytic properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the field of energy saving, finding composite materials with the ability of coloring upon both illumination and change of the applied electrode potential keeps on being an important goal. In this context, chemical bath deposition of Ni(OH)2 into nanoporous TiO2 thin films supported on conducting glass leads to electrodes showing both conventional electrochromic behavior (from colorless to dark brown and vice versa) together with photochromism at constant applied potential. The latter phenomenon, reported here for the first time, is characterized by fast and reversible coloration upon UV illumination. The bleaching kinetics shows first order behavior with respect to the NiIII centers in the film, and an order 1.2 with respect to electrons in the TiO2 film. From a more applied point of view, this study opens up the possibility of having two-mode smart windows showing not only conventional electrochromism but also reversible darkening upon illumination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interface between a Pt(111) electrode and a room temperature ionic liquid, 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, was investigated with the laser-induced temperature jump method. In this technique, the temperature of the interface is suddenly increased by applying short laser pulses. The change of the electrode potential caused by the thermal perturbation is measured under coulostatic conditions during the subsequent temperature relaxation. This change is mainly related to the reorganization of the solvent components near the electrode surface. The sign of the potential transient depends on the potential of the experiment. At high potential values, positive transients indicate a higher density of anions than cations close the surface, contributing negatively to the potential of the electrode. Decreasing the applied potential to sufficiently low values, the transient becomes negative, meaning that the density of cations becomes then higher at the surface of the electrode. The potential dependence of the interfacial response shows a marked hysteresis depending on the direction in which the applied potential is changed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The direct electron transfer between indium–tin oxide electrodes (ITO) and cytochrome c encapsulated in different sol–gel silica networks was studied. Cyt c@silica modified electrodes were synthesized by a two-step encapsulation method mixing a phosphate buffer solution with dissolved cytochrome c and a silica sol prepared by the alcohol-free sol–gel route. These modified electrodes were characterized by cyclic voltammetry, UV–vis spectroscopy, and in situ UV–vis spectroelectrochemistry. The electrochemical response of encapsulated protein is influenced by the terminal groups of the silica pores. Cyt c does not present electrochemical response in conventional silica (hydroxyl terminated) or phenyl terminated silica. Direct electron transfer to encapsulated cytochrome c and ITO electrodes only takes place when the protein is encapsulated in methyl modified silica networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, the electrochemical properties of single-walled carbon nanotube buckypapers (BPs) were examined in terms of carbon nanotubes nature and preparation conditions. The performance of the different free-standing single wall carbon nanotube sheets was evaluated via cyclic voltammetry of several redox probes in aqueous electrolyte. Significant differences are observed in the electron transfer kinetics of the buckypaper-modified electrodes for both the outer- and inner-sphere redox systems. These differences can be ascribed to the nature of the carbon nanotubes (nanotube diameter, chirality and aspect ratio), surface oxidation degree and type of functionalities. In the case of dopamine, ferrocene/ferrocenium, and quinone/hydroquinone redox systems the voltammetric response should be thought as a complex contribution of different tips and sidewall domains which act as mediators for the electron transfer between the adsorbate species and the molecules in solution. In the other redox systems only nanotube ends are active sites for the electron transfer. It is also interesting to point out that a higher electroactive surface area not always lead to an improvement in the electron transfer rate of various redox systems. In addition, the current densities produced by the redox reactions studied here are high enough to ensure a proper electrochemical signal, which enables the use of BPs in sensing devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electroassisted encapsulation of Single-Walled Carbon Nanotubes was performed into silica matrices (SWCNT@SiO2). This material was used as the host for the potentiostatic growth of polyaniline (PANI) to yield a hybrid nanocomposite electrode, which was then characterized by both electrochemical and imaging techniques. The electrochemical properties of the SWCNT@SiO2-PANI composite material were tested against inorganic (Fe3+/Fe2+) and organic (dopamine) redox probes. It was observed that the electron transfer constants for the electrochemical reactions increased significantly when a dispersion of either SWCNT or PANI was carried out inside of the SiO2 matrix. However, the best results were obtained when polyaniline was grown through the pores of the SWCNT@SiO2 material. The enhanced reversibility of the redox reactions was ascribed to the synergy between the two electrocatalytic components (SWCNTs and PANI) of the composite material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sodium montmorillonite (Na-M), acidic montmorillonite (H-M), and organo-acidic montmorillonite (Org-H-M) were applied to remove the herbicide 8-quinolinecarboxylic acid (8-QCA). The montmorillonites containing adsorbed 8-QCA were investigated by transmission electron microscopy, FT-IR spectroscopy, X-ray diffraction analysis, X-ray fluorescence thermogravimetric analysis, and physical adsorption of gases. Experiments showed that the amount of adsorbed 8-QCA increased at lower pH, reaching a maximum at pH 2. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The Langmuir model provided the best correlation of experimental data for adsorption equilibria. The adsorption of 8-QCA decreased in the order Org-H-M > H-M > Na-M. Isotherms were also used to obtain the thermodynamic parameters. The negative values of ΔG indicated the spontaneous nature of the adsorption process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple method was used to synthesize poly(2-aminophenol), poly(2-aminophenol-co-Aniline) and polyaniline nanocomposites with sodium-montmorillonite (Na-M) using in situ intercalative oxidative polymerization. Morphology and thermal properties of the synthesized nanocomposites were examined by transmission electron microscopy (TEM) and thermogravimetric analysis. The thermal analysis shows an improved thermal stability of the nanocomposites in comparison with the pure poly(2-aminophenol). The intercalation of polymers into the clay layers was confirmed by X-ray diffraction studies, TEM images and FTIR spectroscopy. In addition, the room temperature conductivity values of these nanocomposites varied between 8.21 × 10−5 and 6.76 × 10−4 S cm−1. The electrochemical behavior of the polymers extracted from the nanocomposites, has been analyzed by cyclic voltammetry. Good electrochemical response has been observed for polymer films; the observed redox processes indicate that the polymerization into Na-M produces electroactive polymers.