39 resultados para Retina.
Resumo:
Póster presentado en OPTYKA Optical Fair 2012, Poznan, Polonia, 9-10 noviembre 2012.
Resumo:
The ubiquitin–proteasome system (UPS) is the main intracellular pathway for modulated protein turnover, playing an important role in the maintenance of cellular homeostasis. It also exerts a protein quality control through degradation of oxidized, mutant, denatured, or misfolded proteins and is involved in many biological processes where protein level regulation is necessary. This system allows the cell to modulate its protein expression pattern in response to changing physiological conditions and provides a critical protective role in health and disease. Impairments of UPS function in the central nervous system (CNS) underlie an increasing number of genetic and idiopathic diseases, many of which affect the retina. Current knowledge on the UPS composition and function in this tissue, however, is scarce and dispersed. This review focuses on UPS elements reported in the retina, including ubiquitinating and deubiquitinating enzymes (DUBs), and alternative proteasome assemblies. Known and inferred roles of protein ubiquitination, and of the related, SUMO conjugation (SUMOylation) process, in normal retinal development and adult homeostasis are addressed, including modulation of the visual cycle and response to retinal stress and injury. Additionally, the relationship between UPS dysfunction and human neurodegenerative disorders affecting the retina, including Alzheimer's, Parkinson's, and Huntington's diseases, are dealt with, together with numerous instances of retina-specific illnesses with UPS involvement, such as retinitis pigmentosa, macular degenerations, glaucoma, diabetic retinopathy (DR), and aging-related impairments. This information, though still basic and limited, constitutes a suitable framework to be expanded in incoming years and should prove orientative toward future therapy design targeting sight-affecting diseases with a UPS underlying basis.
Resumo:
Retinal image quality is commonly analyzed through parameters inherited from instrumental optics. These parameters are defined for ‘good optics’ so they are hard to translate into visual quality metrics. Instead of using point or artificial functions, we propose a quality index that takes into account properties of natural images. These images usually show strong local correlations that help to interpret the image. Our aim is to derive an objective index that quantifies the quality of vision by taking into account the local structure of the scene, instead of focusing on a particular aberration. As we show, this index highly correlates with visual acuity and allows inter-comparison of natural images around the retina. The usefulness of the index is proven through the analysis of real eyes before and after undergoing corneal surgery, which usually are hard to analyze with standard metrics.
Resumo:
Proinsulin has been characterized as a neuroprotective molecule. In this work we assess the therapeutic potential of proinsulin on photoreceptor degeneration, synaptic connectivity, and functional activity of the retina in the transgenic P23H rat, an animal model of autosomal dominant retinitis pigmentosa (RP). P23H homozygous rats received an intramuscular injection of an adeno-associated viral vector serotype 1 (AAV1) expressing human proinsulin (hPi+) or AAV1-null vector (hPi−) at P20. Levels of hPi in serum were determined by enzyme-linked immunosorbent assay (ELISA), and visual function was evaluated by electroretinographic (ERG) recording at P30, P60, P90, and P120. Preservation of retinal structure was assessed by immunohistochemistry at P120. Human proinsulin was detected in serum from rats injected with hPi+ at all times tested, with average hPi levels ranging from 1.1 nM (P30) to 1.4 nM (P120). ERG recordings showed an amelioration of vision loss in hPi+ animals. The scotopic b-waves were significantly higher in hPi+ animals than in control rats at P90 and P120. This attenuation of visual deterioration correlated with a delay in photoreceptor degeneration and the preservation of retinal cytoarchitecture. hPi+ animals had 48.7% more photoreceptors than control animals. Presynaptic and postsynaptic elements, as well as the synaptic contacts between photoreceptors and bipolar or horizontal cells, were preserved in hPi+ P23H rats. Furthermore, in hPi+ rat retinas the number of rod bipolar cell bodies was greater than in control rats. Our data demonstrate that hPi expression preserves cone and rod structure and function, together with their contacts with postsynaptic neurons, in the P23H rat. These data strongly support the further development of proinsulin-based therapy to counteract retinitis pigmentosa.
Resumo:
Background: Refractive error is defined as the inability of the eye to bring parallel rays of light into focus on the retina, resulting in nearsightedness (myopia), farsightedness (Hyperopia) or astigmatism. Uncorrected refractive error in children is associated with increased morbidity and reduced educational opportunities. Vision screening (VS) is a method for identifying children with visual impairment or eye conditions likely to lead to visual impairment. Objective: To analyze the utility of vision screening conducted by teachers and to contribute to a better estimation of the prevalence of childhood refractive errors in Apurimac, Peru. Design: A pilot vision screening program in preschool (Group I) and elementary school children (Group II) was conducted with the participation of 26 trained teachers. Children whose visual acuity was<6/9 [20/30] (Group I) and≤6/9 (Group II) in one or both eyes, measured with the Snellen Tumbling E chart at 6 m, were referred for a comprehensive eye exam. Specificity and positive predictive value to detect refractive error were calculated against clinical examination. Program assessment with participants was conducted to evaluate outcomes and procedures. Results: A total sample of 364 children aged 3–11 were screened; 45 children were examined at Centro Oftalmológico Monseñor Enrique Pelach (COMEP) Eye Hospital. Prevalence of refractive error was 6.2% (Group I) and 6.9% (Group II); specificity of teacher vision screening was 95.8% and 93.0%, while positive predictive value was 59.1% and 47.8% for each group, respectively. Aspects highlighted to improve the program included extending training, increasing parental involvement, and helping referred children to attend the hospital. Conclusion: Prevalence of refractive error in children is significant in the region. Vision screening performed by trained teachers is a valid intervention for early detection of refractive error, including screening of preschool children. Program sustainability and improvements in education and quality of life resulting from childhood vision screening require further research.
Resumo:
Purpose: To determine whether systemic fungal infection could cause activation of retinal microglia and therefore could be potentially harmful for patients with retinal degenerative diseases. Methods: Activation of retinal microglia was measured in a model of sublethal invasive candidiasis in C57BL/6J mice by (i) confocal immunofluorescence and (ii) flow cytometry analysis, using anti-CD11b, anti-Iba1, anti-MHCII and anti-CD45 antibodies. Results: Systemic fungal infection causes activation of retinal microglia, with phenotypic changes in morphology, surface markers expression, and microglial re-location in retinal layers. Conclusions: As an excessive or prolonged microglial activation may lead to chronic inflammation with severe pathological side effects, causing or worsening the course of retinal dystrophies, a systemic infection may represent a risk factor to be considered in patients with ocular neurodegenerative diseases, such as diabetic retinopathy, glaucoma, age-related macular degeneration or retinitis pigmentosa.
Resumo:
Cannabinoids have been demonstrated to exert neuroprotective effects on different types of neuronal insults. Here we have addressed the therapeutic potential of the synthetic cannabinoid HU210 on photoreceptor degeneration, synaptic connectivity and functional activity of the retina in the transgenic P23H rat, an animal model for autosomal dominant retinitis pigmentosa (RP). In P23H rats administered with HU210 (100 μg/kg, i.p.) from P24 to P90, ERG recordings showed an amelioration of vision loss, as compared to vehicle-administered animals. Under scotopic conditions, the maximum a-wave amplitudes recorded at P60 and P90 were higher in HU210-treated animals, as compared to the values obtained in untreated animals. The scotopic b-waves were significantly higher in treated animals than in untreated rats at P30, P60 and P90. This attenuation of visual deterioration correlated with a delay in photoreceptor degeneration and the preservation of retinal cytoarchitecture. HU210-treated animals had 40% more photoreceptors than untreated animals. Presynaptic and postsynaptic elements, as well as the synaptic contacts between photoreceptors and bipolar or horizontal cells, were also preserved in HU210-treated P23H rats. These results indicate that HU210 preserves cone and rod structure and function, together with their contacts with postsynaptic neurons, in P23H rats. These data suggest that cannabinoids are potentially useful to delay retinal degeneration in RP patients.
Resumo:
Unlike fish and amphibians, mammals do not regenerate retinal neurons throughout life. However, neurogenic potential may be conserved in adult mammal retina and it is necessary to identify the factors that regulate retinal progenitor cells (RPC) proliferative capacity to scope their therapeutic potential. Müller cells can be progenitors for retinal neuronal cells and can play an essential role in the restoration of visual function after retinal injury. Some members of the Toll-like receptor (TLR) family, TLR2, TLR3 and TLR4, are related to progenitor cells proliferation. Müller cells are important in retinal regeneration and stable cell lines are useful for the study of retinal stem cell biology. Our purpose was to obtain a Müller-derived cell line with progenitor characteristics and potential interest in regeneration processes. We obtained and characterized a murine Müller-derived cell line (MU-PH1), which proliferates indefinitely in vitro. Our results show that (i) MU-PH1 cells expresses the Müller cell markers Vimentin, S-100, glutamine synthetase and the progenitor and stem cell markers Nestin, Abcg2, Ascl1, α-tubulin and β-III-tubulin, whereas lacks the expression of CRALBP, GFAP, Chx10, Pax6 and Notch1 markers; (ii) MU-PH1 cell line stably express the photoreceptor markers recoverin, transducin, rhodopsin, blue and red/green opsins and also melanopsin; (iii) the presence of opsins was confirmed by the recording of intracellular free calcium levels during light stimulation; (iv) MU-PH1 cell line also expresses the melatonin MT1 and MT2 receptors; (v) MU-PH1 cells express TLR1, 2, 4 and 6 mRNA; (vi) MU-PH1 express TLR2 at cell surface level; (vii) Candida albicans increases TLR2 and TLR6 mRNA expression; (viii) C. albicans or TLR selective agonists (Pam(3)CysSK(4), LPS) did not elicit morphological changes nor TNF-α secretion; (ix) C. albicans and Pam(3)CysSK(4) augmented MU-PH1 neurospheres formation in a statistically significant manner. Our results indicate that MU-PH1 cell line could be of great interest both as a photoreceptor model and in retinal regeneration approaches and that TLR2 may also play a role in retinal cell proliferation.
Resumo:
Purpose. To investigate the spatiotemporal relationship between rod and cone degeneration in the P23H-1 rat. Methods. Control Sprague-Dawley (SD) and P23H-1 rats of ages ranging from P30 to P365 were used. Retinas were processed for whole mounts or cross sections and rods and cones were immunodetected. We used newly developed image analysis techniques to quantify the total population of L/M cones (the most abundant cones in the rat) and analyzed the rings of rod-cone degeneration. Results. In P23H-1 rats, rod degeneration occurs rapidly: first the rod outer segment shortens, at P30 there is extensive rod loss, and by P180 rod loss is almost complete except for the most peripheral retina. The numbers of L/M cones are, at all postnatal ages, lower in P23H-1 rats than in control SD rats, and decrease significantly with age (by P180). Rod and cone degeneration is spatiotemporally related and occurs in rings that appear already at P90 and spread throughout the entire retina. At P180, the rings of rod-cone degeneration are more abundant in the equatorial retina and are larger in the dorsal retina. Conclusions. This work describes for the first time that in the P23H-1 rat, rod and cone degeneration is spatiotemporally related and occurs in rings. Cone loss follows rod loss and starts very soon, even before P30, the first age analyzed here. The characteristics of the rings suggest that secondary cone degeneration is influenced by retinal position and/or other intrinsic or extrinsic factors.
Resumo:
Purpose. Transplantation of human central nervous system stem cells (HuCNS-SC) into the subretinal space of Royal College of Surgeons (RCS) rats preserves photoreceptors and visual function. To explore possible mechanism(s) of action underlying this neuroprotective effect, we performed a detailed morphologic and ultrastructure analysis of HuCNS-SC transplanted retinas. Methods. The HuCNS-SC were transplanted into the subretinal space of RCS rats. Histologic examination of the transplanted retinas was performed by light and electron microscopy. Areas of the retina adjacent to HuCNS-SC graft (treated regions) were analyzed and compared to control sections obtained from the same retina, but distant from the transplant site (untreated regions). Results. The HuCNS-SC were detected as a layer of STEM 121 immunopositive cells in the subretinal space. In treated regions, preserved photoreceptor nuclei, as well as inner and outer segments were identified readily. In contrast, classic signs of degeneration were observed in the untreated regions. Interestingly, detailed ultrastructure analysis revealed a striking preservation of the photoreceptor–bipolar–horizontal cell synaptic contacts in the outer plexiform layer (OPL) of treated areas, in stark contrast with untreated areas. Finally, the presence of phagosomes and vesicles exhibiting the lamellar structure of outer segments also was detected within the cytosol of HuCNS-SC, indicating that these cells have phagocytic capacity in vivo. Conclusions. This study reveals the novel finding that preservation of specialized synaptic contacts between photoreceptors and second order neurons, as well as phagocytosis of photoreceptor outer segments, are potential mechanism(s) of HuCNS-SC transplantation, mediating functional rescue in retinal degeneration.
Resumo:
The retina is a very complex neural structure, which performs spatial, temporal, and chromatic processing on visual information and converts it into a compact ‘digital’ format composed of neural impulses. This paper presents a new compiler-based framework able to describe, simulate and validate custom retina models. The framework is compatible with the most usual neural recording and analysis tools, taking advantage of the interoperability with these kinds of applications. Furthermore it is possible to compile the code to generate accelerated versions of the visual processing models compatible with COTS microprocessors, FPGAs or GPUs. The whole system represents an ongoing work to design and develop a functional visual neuroprosthesis. Several case studies are described to assess the effectiveness and usefulness of the framework.
Resumo:
Purpose. The DBA/2J mouse line develops essential iris atrophy, pigment dispersion, and glaucomatous age-related changes, including an increase of IOP, optic nerve atrophy, and retinal ganglion cell (RGC) death. The aim of this study was to evaluate possible morphological changes in the outer retina of the DBA/2J mouse concomitant with disease progression and aging, based on the reduction of both the a- and b-waves and photopic flicker ERGs in this mouse line. Methods. Vertically sectioned DBA/2J mice retinas were evaluated at 3, 8, and 16 months of age using photoreceptor, horizontal, and bipolar cell markers. Sixteen-month-old C57BL/6 mice retinas were used as controls. Results. The DBA/2J mice had outer retinal degeneration at all ages, with the most severe degeneration in the oldest retinas. At 3 months of age, the number of photoreceptor cells and the thickness of the OPL were reduced. In addition, there was a loss of horizontal and ON-bipolar cell processes. At 8 months of age, RGC degeneration occurred in patches, and in the outer retina overlying these patches, cone morphology was impaired with a reduction in size as well as loss of outer segments and growth of horizontal and bipolar cell processes into the outer nuclear layer. At 16 months of age, connectivity between photoreceptors and horizontal and bipolar cell processes overlying these patches was lost. Conclusions. Retinal degeneration in DBA/2J mice includes photoreceptor death, loss of bipolar and horizontal cell processes, and loss of synaptic contacts in an aging-dependent manner.
Resumo:
Purpose: To evaluate postoperative spectral-domain optical coherence tomography findings after macular hole surgery. Methods: Retrospective, interventional, nonrandomized study. Overall, 164 eyes of 157 patients diagnosed with macular hole were operated on by vitrectomy and internal limiting membrane peeling. Preoperative and postoperative best-corrected visual acuity and spectral-domain optical coherence tomography images were obtained. Two groups were considered on the basis of the postoperative integrity of the back reflection line from the ellipsoid portion of the photoreceptor inner segment: group A (disruption of ellipsoid portion of the inner segment line, 60 eyes) and group B (restoration of ellipsoid portion of the inner segment line, 104 eyes). Results: Logarithm of the minimum angle of resolution best-corrected visual acuity improved significantly after the surgery of macular hole from a mean preoperative value of 0.79 ± 0.37 (range, 0.15–2.00) to a mean postoperative value of 0.35 ± 0.31 (range, 0.00–1.30) at the last follow-up visit (P < 0.01). Best-corrected visual acuity improved significantly in the 2 groups analyzed (all P < 0.01). A larger improvement was found in group B than in group A (P < 0.01). Conclusion: Ellipsoid portion of the inner segment line reconstruction seems to be a good prognostic factor for visual rehabilitation after macular hole surgery.
Resumo:
Background: Retinitis pigmentosa is a heterogeneous group of inherited neurodegenerative retinal disorders characterized by a progressive peripheral vision loss and night vision difficulties, subsequently leading to central vision impairment. Chronic microglia activation is associated with various neurodegenerative diseases including retinitis pigmentosa. The objective of this study was to quantify microglia activation in the retina of P23H rats, an animal model of retinitis pigmentosa, and to evaluate the therapeutic effects of TUDCA (tauroursodeoxycholic acid), which has been described as a neuroprotective compound. Methods: For this study, homozygous P23H line 3 and Sprague-Dawley (SD) rats were injected weekly with TUDCA (500 mg/kg, ip) or vehicle (saline) from 20 days to 4 months old. Vertical retinal sections and whole-mount retinas were immunostained for specific markers of microglial cells (anti-CD11b, anti-Iba1 and anti-MHC-II). Microglial cell morphology was analyzed and the number of retinal microglial was quantified. Results: Microglial cells in the SD rat retinas were arranged in regular mosaics homogenously distributed within the plexiform and ganglion cell layers. In the P23H rat retina, microglial cells increased in number in all layers compared with control SD rat retinas, preserving the regular mosaic distribution. In addition, a large number of amoeboid CD11b-positive cells were observed in the P23H rat retina, even in the subretinal space. Retinas of TUDCA-treated P23H animals exhibited lower microglial cell number in all layers and absence of microglial cells in the subretinal space. Conclusions: These results report novel TUDCA anti-inflammatory actions, with potential therapeutic implications for neurodegenerative diseases, including retinitis pigmentosa.
Resumo:
Our eyes never remain still. Even when we stare at a fixed point, small involuntary movements take place in our eyes in an imperceptible manner. Researchers agree on the presence of three main contributions to eye movements when we fix the gaze: microsaccades, drifts and tremor. These small movements carry the image across the retina stimulating the photoreceptors and thus avoiding fading. Nowadays it is commonly accepted that these movements can improve the discrimination performance of the retina. In this paper, several retina models with and without fixational eye movements were implemented by mean of RetinaStudio tool to test the feasibility of these models to be incorporated in future neuroprostheses. For this purpose each retina model has been stimulated with natural scene images in two experiments. Results are discussed from the point of view of a neuroprosthesis development.