Retinal image quality assessment through a visual similarity index
Contribuinte(s) |
Universidad de Alicante. Departamento de Óptica, Farmacología y Anatomía Universidad de Alicante. Instituto de Física Aplicada a las Ciencias y las Tecnologías Óptica y Ciencias de la Visión |
---|---|
Data(s) |
13/05/2013
13/05/2013
01/03/2013
07/05/2013
|
Resumo |
Retinal image quality is commonly analyzed through parameters inherited from instrumental optics. These parameters are defined for ‘good optics’ so they are hard to translate into visual quality metrics. Instead of using point or artificial functions, we propose a quality index that takes into account properties of natural images. These images usually show strong local correlations that help to interpret the image. Our aim is to derive an objective index that quantifies the quality of vision by taking into account the local structure of the scene, instead of focusing on a particular aberration. As we show, this index highly correlates with visual acuity and allows inter-comparison of natural images around the retina. The usefulness of the index is proven through the analysis of real eyes before and after undergoing corneal surgery, which usually are hard to analyze with standard metrics. Financial support of the Generalitat Valenciana through the projects PROMETEO/2011/021 and ISIC/2012/013 and the University of Alicante through the project GRE10-09. |
Identificador |
PÉREZ, Jorge, et al. “Retinal image quality assessment through a visual similarity index”. Journal of Modern Optics. First published on: 7 May 2013. ISSN 0950-0340 0950-0340 (Print) 1362-3044 (Online) http://hdl.handle.net/10045/28256 10.1080/09500340.2013.794394 |
Idioma(s) |
eng |
Publicador |
Taylor & Francis |
Relação |
http://dx.doi.org/10.1080/09500340.2013.794394 |
Direitos |
This is an electronic version of an article published in the Journal of Modern Optics © 2013 Copyright Taylor & Francis; Journal of Modern Optics is available online at http://www.tandfonline.com/ info:eu-repo/semantics/openAccess |
Palavras-Chave | #Vision model #Retinal image quality #Structural similarity index #Óptica |
Tipo |
info:eu-repo/semantics/article |