11 resultados para self-learning
em University of Queensland eSpace - Australia
Resumo:
In this letter, we propose a class of self-stabilizing learning algorithms for minor component analysis (MCA), which includes a few well-known MCA learning algorithms. Self-stabilizing means that the sign of the weight vector length change is independent of the presented input vector. For these algorithms, rigorous global convergence proof is given and the convergence rate is also discussed. By combining the positive properties of these algorithms, a new learning algorithm is proposed which can improve the performance. Simulations are employed to confirm our theoretical results.
Resumo:
A considerable body of literature suggests that significant psychological barrier and anxiety characterize the teaching and learning process in statistics. This study investigates the incidence of statistics anxiety, the extent to which it can be overcome and the factors that contribute to the process of overcoming it. Self-study and overall teaching quality, amongst others, significantly contributed to this outcome. This study identifies factors contributing to overall teaching quality. The teaching and learning process typified a highly effective communication mechanism based on an appropriate diagnosis of individual needs. This cumulative change resulted from circular causation. It is argued that given appropriate conditions the vicious circle of anxiety can be transformed into a virtuous circle of learning.
Resumo:
Students in a physical sciences course were introduced to cooperative learning at the University of Queensland, Gatton Campus. Groups of four to five students worked together in tutorial and practical sessions. Mid-term and practical examinations were abolished and 40% of total marks were allocated to the cooperative learning activities. A peer- and self-assessment system was successfully adapted to account for individual performance in cooperative learning group assignments. The results suggest that cooperative learning was very well received by students, and they expressed willingness to join cooperative learning groups in other courses. In addition, cooperative learning offered many benefits to students in terms of graduate attributes such as teamwork, communication, lifelong learning and problem-solving.
Resumo:
The present work documents how the logic of a model's demonstration and the communicative cues that the model provides interact with age to influence how children engage in social learning. Children at ages 12, 18, and 24 months (n = 204) watched a model open a series of boxes. Twelve-month-old subjects only copied the specific actions of the model when they were given a logical reason to do so- otherwise, they focused on reproducing the outcome of the demonstrated actions. Eighteen-month-old subjects focused on copying the outcome when the model was aloof. When the model acted socially, the subjects were as likely to focus on copying actions as outcomes, irrespective of the apparent logic of the model's behavior. Finally, 24-month-old subjects predominantly focused on copying the model's specific actions. However, they were less likely to produce the modeled outcome when the model acted nonsocially.
Resumo:
The parameterless self-organizing map (PLSOM) is a new neural network algorithm based on the self-organizing map (SOM). It eliminates the need for a learning rate and annealing schemes for learning rate and neighborhood size. We discuss the relative performance of the PLSOM and the SOM and demonstrate some tasks in which the SOM fails but the PLSOM performs satisfactory. Finally we discuss some example applications of the PLSOM and present a proof of ordering under certain limited conditions.
Resumo:
The aim of the Rural Medicine Rotation (RMR) at the University of Queensland (UQ) is to give all third year medical students exposure to and an understanding of, clinical practice in Australian rural or remote locations. A difficulty in achieving this is the relatively short period of student clinical placements, in only one or two rural or remote locations. A web-based Clinical Discussion Board (CDB) has been introduced to address this problem by allowing students at various rural sites to discuss their rural experiences and clinical issues with each other. The rationale is to encourage an understanding of the breadth and depth of rural medicine through peer-based learning. Students are required to submit a minimum of four contributions over the course of their six week rural placement. Analysis of student usage patterns shows that the majority of students exceeded the minimum submission criteria indicating motivation rather than compulsion to contribute to the CDB. There is clear evidence that contributing or responding to the CDB develops studentâ??s critical thinking skills by giving and receiving assistance from peers, challenging attitudes and beliefs and stimulating reflective thought. This is particularly evident in regard to issues involving ethics or clinical uncertainty, subject areas that are not in the medical undergraduate curriculum, yet are integral to real-world medical practice. The CDB has proved to be a successful way to understand the concerns and interests of third year medical students immersed in their RMR and also in demonstrating how technology can help address the challenge of supporting students across large geographical areas. We have recently broadened this approach by including students from the Rural Program at The Ohio State University College of Medicine. This important international exchange of ideas and approaches to learning is expected to broaden clinical training content and improve understanding of rural issues.
Resumo:
As an alternative to traditional evolutionary algorithms (EAs), population-based incremental learning (PBIL) maintains a probabilistic model of the best individual(s). Originally, PBIL was applied in binary search spaces. Recently, some work has been done to extend it to continuous spaces. In this paper, we review two such extensions of PBIL. An improved version of the PBIL based on Gaussian model is proposed that combines two main features: a new updating rule that takes into account all the individuals and their fitness values and a self-adaptive learning rate parameter. Furthermore, a new continuous PBIL employing a histogram probabilistic model is proposed. Some experiments results are presented that highlight the features of the new algorithms.