16 resultados para negotiation support systems
em University of Queensland eSpace - Australia
Resumo:
A framework for developing marketing category management decision support systems (DSS) based upon the Bayesian Vector Autoregressive (BVAR) model is extended. Since the BVAR model is vulnerable to permanent and temporary shifts in purchasing patterns over time, a form that can correct for the shifts and still provide the other advantages of the BVAR is a Bayesian Vector Error-Correction Model (BVECM). We present the mechanics of extending the DSS to move from a BVAR model to the BVECM model for the category management problem. Several additional iterative steps are required in the DSS to allow the decision maker to arrive at the best forecast possible. The revised marketing DSS framework and model fitting procedures are described. Validation is conducted on a sample problem.
Exploring auditory displays to support anaesthesia monitoring: Six questions from a research program
Resumo:
Over the past 30 years, research in the area of applied behaviour. analysis has led to a rich knowledge and understanding of the variables that influence human behaviour. This understanding and knowledge has given rise to a range of assessment and intervention techniques that have been applied to individuals with challenging behaviour. Interventions have produced changes in the severity and frequency of behaviours such as self-injury, aggression, and property destruction, card have also led to the acquisition of desired behaviours. While behaviour change has been achieved, families have expressed a desire for positive behaviour support approaches that adopt a family,focus. Research and development of support frameworks that emphasise the interrelatedness of family members, and the child with a disability as part of his or her family, have gained prominence in the family systems literature. The present paper reviews some of the behaviourally based research in this area. Through the use of a case illustration, the authors discuss the links between behavioural support and family-centred support systems for children with developmental disabilities. Theoretical and practical implications are considered and areas for future research are highlighted.
Resumo:
In both Australia and Brazil there are rapid changes occurring in the macroenvironment of the dairy industry. These changes are sometimes not noticed in the microenvironment of the farm, due to the labour-intensive nature of family farms, and the traditionally weak links between production and marketing. Trends in the external environment need to be discussed in a cooperative framework, to plan integrated actions for the dairy community as a whole and to demand actions from research, development and extension (R, D & E). This paper reviews the evolution of R, D & E in terms of paradigms and approaches, the present strategies used to identify dairy industry needs in Australia and Brazil, and presents a participatory strategy to design R, D & E actions for both countries. The strategy incorporates an integration of the opinions of key industry actors ( defined as members of the dairy and associated communities), especially farm suppliers ( input market), farmers, R, D & E people, milk processors and credit providers. The strategy also uses case studies with farm stays, purposive sampling, snowball interviewing techniques, semi-structured interviews, content analysis, focus group meetings, and feedback analysis, to refine the priorities for R, D & E actions in the region.
Resumo:
Virtual learning environments (VLEs) are computer-based online learning environments, which provide opportunities for online learners to learn at the time and location of their choosing, whilst allowing interactions and encounters with other online learners, as well as affording access to a wide range of resources. They have the capability of reaching learners in remote areas around the country or across country boundaries at very low cost. Personalized VLEs are those VLEs that provide a set of personalization functionalities, such as personalizing learning plans, learning materials, tests, and are capable of initializing the interaction with learners by providing advice, necessary instant messages, etc., to online learners. One of the major challenges involved in developing personalized VLEs is to achieve effective personalization functionalities, such as personalized content management, learner model, learner plan and adaptive instant interaction. Autonomous intelligent agents provide an important technology for accomplishing personalization in VLEs. A number of agents work collaboratively to enable personalization by recognizing an individual's eLeaming pace and reacting correspondingly. In this research, a personalization model has been developed that demonstrates dynamic eLearning processes; secondly, this study proposes an architecture for PVLE by using intelligent decision-making agents' autonomous, pre-active and proactive behaviors. A prototype system has been developed to demonstrate the implementation of this architecture. Furthemore, a field experiment has been conducted to investigate the performance of the prototype by comparing PVLE eLearning effectiveness with a non-personalized VLE. Data regarding participants' final exam scores were collected and analyzed. The results indicate that intelligent agent technology can be employed to achieve personalization in VLEs, and as a consequence to improve eLeaming effectiveness dramatically.
Resumo:
Power systems are large scale nonlinear systems with high complexity. Various optimization techniques and expert systems have been used in power system planning. However, there are always some factors that cannot be quantified, modeled, or even expressed by expert systems. Moreover, such planning problems are often large scale optimization problems. Although computational algorithms that are capable of handling large dimensional problems can be used, the computational costs are still very high. To solve these problems, in this paper, investigation is made to explore the efficiency and effectiveness of combining mathematic algorithms with human intelligence. It had been discovered that humans can join the decision making progresses by cognitive feedback. Based on cognitive feedback and genetic algorithm, a new algorithm called cognitive genetic algorithm is presented. This algorithm can clarify and extract human's cognition. As an important application of this cognitive genetic algorithm, a practical decision method for power distribution system planning is proposed. By using this decision method, the optimal results that satisfy human expertise can be obtained and the limitations of human experts can be minimized in the mean time.
Resumo:
The consequences of demographic dissimilarity for group trust in work teams was examined in a virtual (computer-mediated) and a face-to-face (FTF) environment. Demographic dissimilarity (based on age, gender, country of birth, enrolled degree) was predicted to be negatively associated with group trust in the FTF environment but not in the computer-mediated environment. Participants worked in small groups on a creative task for 3 consecutive days. In the computer-mediated environment, participants worked on the task for an hour per day. In the FTF environment, participants worked on the task for 20 minutes per day. Partial support was found for the effectiveness of computer-mediated groups in reducing the negative consequences of dissimilarity. Age dissimilarity was negatively related to trust in FTF groups but not in computer-mediated groups. Birthplace dissimilarity was positively related to trust in computer-mediated groups. Implications for the successful management of virtual teams are discussed.
Resumo:
Our research described in this paper identifies a three part premise relating to the spyware paradigm. Firstly the data suggests spyware is proliferating at an exponential rate. Secondly ongoing research confirms that spyware produces many security risks – including that of privacy/confidentiality breaches via illicit data collection and reporting. Thirdly, anti-spyware controls are improving but are still considered problematic for several reasons. Our research then concludes that control measures to counter this very significant challenge should merit compliance auditing – and this auditing may effectively target the vital message passing performed by all illicit data collection spyware. Our research then evolves into an experiment involving the design and implementation of a software audit tool to conduct the desired compliance auditing. The software audit tool is positioned at the protected network’s gateway. The software audit tool uses ‘phone-home’ IP addresses as spyware signatures to detect the presence of the offending software. The audit tool also has the capability to differentiate legitimate message passing software from that produced by spyware – and ‘learn’ both new spyware signatures and new legitimate message passing profiles. The testing stage of the software has proven successful – albeit using very limited levels of network message passing variety and frequency.