34 resultados para acidity in solids
em University of Queensland eSpace - Australia
Resumo:
Improvements to the routine methods for the determination of actual acidity in suspension for acid sulfate soils (ASS) are introduced. The titratable sulfidic acidity (TSA) results using an improved peroxide-based method were compared with the theoretical acidity predicted by the chromium reducible sulfur method for 9 acid sulfate soils. The regression between these 2 measures of sulfidic acidity was highly significant, the slope of the regression line not significantly different from unity (P = 0.05) and the intercept not significantly different from zero. This contrasts with results of other workers using earlier peroxide oxidation methods, where TSA substantially underestimated the theoretical acidity predicted by reduced inorganic sulfur analysis. Comparison was made between the 2 principal measurements from the improved peroxide method (TSA and S-POS), with S-POS converted to theoretical sulfidic acidity to allow comparison. The relationship between these 2 measurements was highly significant. The effects of titration in suspension, as well as raising titration end points to pH 6.5, were investigated, principally with respect to the titratable actual acidity (TAA) result. TAA results obtained by KCl extraction were compared with those obtained using BaCl2, MgCl2, and water extraction. TAA in 1 M KCl suspensions titrated to pH 6.5 agreed well with titratable actual acidity measured using the 25-h extraction approach of the Lin et al. (2000a) BaCl2 method. Both BaCl2 and KCl solutions were ineffective at fully recovering acidity from synthetic jarosite without repeated extraction and titration. The application of correction factors for the estimation of total actual acidity in ASS is not supported by the results of this investigation. Acid sulfate soils that contain substantial quantities of jarosite or other acid-producing but relatively insoluble sulfate minerals continue to prove problematic to chemically analyse; however, an approach for estimating this component is discussed.
Resumo:
Increasing evidence is emerging that the performance of enhanced biological phosphorus removal (EBPR) systems relies on not only the total amount but also the composition of volatile fatty acids (VFAs). Domestic wastewater often contains limited amounts of VFAs with acetic acid typically being the dominating species. Consequently, prefermenters are often employed to generate additional VFAs to meet the demand for carbon by EBPR and/or denitrification processes. Limited knowledge is currently available on the effects of operational conditions on the production rate and composition of VFAs in prefermenters. In this study, a series of controlled batch experiments were conducted with sludge from a full-scale prefermenter to determine the impact of solids concentration, pH and addition of molasses on prefermentation processes. It was found that an increase in solids concentration enhanced total VFA production with an increased propionic acid fraction. The optimal pH for prefermentation was in the range of 6-7 with significant productivity loss when pH was below 5.5. Molasses addition significantly increased the production of VFAs particularly the propionic acid. However, the fermentation rate was likely limited by the biological activity of the sludge rather than by the amount of molasses added.
Resumo:
The edge-to-edge matching model, which was originally developed for predicting crystallographic features in diffusional phase transformations in solids, has been used to understand the formation of in-plane textures in TiSi2 (C49) thin films on Si single crystal (001)si surface. The model predicts all the four previously reported orientation relationships between C49 and Si substrate based on the actual atom matching across the interface and the basic crystallographic data only. The model has strong potential to be used to develop new thin film materials. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The moving finite element collocation method proposed by Kill et al. (1995) Chem. Engng Sci. 51 (4), 2793-2799 for solution of problems with steep gradients is further developed to solve transient problems arising in the field of adsorption. The technique is applied to a model of adsorption in solids with bidisperse pore structures. Numerical solutions were found to match the analytical solution when it exists (i.e. when the adsorption isotherm is linear). The method is simple yet sufficiently accurate for use in adsorption problems, where global collocation methods fail. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Petrov-Galerkin methods are known to be versatile techniques for the solution of a wide variety of convection-dispersion transport problems, including those involving steep gradients. but have hitherto received little attention by chemical engineers. We illustrate the technique by means of the well-known problem of simultaneous diffusion and adsorption in a spherical sorbent pellet comprised of spherical, non-overlapping microparticles of uniform size and investigate the uptake dynamics. Solutions to adsorption problems exhibit steep gradients when macropore diffusion controls or micropore diffusion controls, and the application of classical numerical methods to such problems can present difficulties. In this paper, a semi-discrete Petrov-Galerkin finite element method for numerically solving adsorption problems with steep gradients in bidisperse solids is presented. The numerical solution was found to match the analytical solution when the adsorption isotherm is linear and the diffusivities are constant. Computed results for the Langmuir isotherm and non-constant diffusivity in microparticle are numerically evaluated for comparison with results of a fitted-mesh collocation method, which was proposed by Liu and Bhatia (Comput. Chem. Engng. 23 (1999) 933-943). The new method is simple, highly efficient, and well-suited to a variety of adsorption and desorption problems involving steep gradients. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Solids concentration and particle size distribution gradually change in the vertical dimension of industrial flotation cells, subject primarily to the flotation cell size and design and the cell operating conditions. As entrainment is a two-step process and involves only the suspended solids in the top pulp region near the pulp-froth interface, the solids suspension characteristics have a significant impact on the overall entrainment. In this paper, a classification function is proposed to describe the state of solids suspension in flotation cells, similar to the definition of degree of entrainment for classification in the froth phase found in the literature. A mathematical model for solids suspension is also developed, in which the classification function is expressed as an exponential function of the particle size. Experimental data collected from three different Outokumpu tank flotation cells in three different concentrators are well fitted by the proposed exponential model. Under the prevailing experimental conditions, it was found that the solids content in the top region was relatively independent of cell operating conditions such as froth height and air rate but dependent on the cell size. Moreover, the results obtained from the total solids tend to be similar to those from a particular gangue mineral and hence may be applied to all minerals in entrainment calculation. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A piecewise uniform fitted mesh method turns out to be sufficient for the solution of a surprisingly wide variety of singularly perturbed problems involving steep gradients. The technique is applied to a model of adsorption in bidisperse solids for which two fitted mesh techniques, a fitted-mesh finite difference method (FMFDM) and fitted mesh collocation method (FMCM) are presented. A combination (FMCMD) of FMCM and the DASSL integration package is found to be most effective in solving the problems. Numerical solutions (FMFDM and FMCMD) were found to match the analytical solution when the adsorption isotherm is linear, even under conditions involving steep gradients for which global collocation fails. In particular, FMCMD is highly efficient for macropore diffusion control or micropore diffusion control. These techniques are simple and there is no limit on the range of the parameters. The techniques can be applied to a variety of adsorption and desorption problems in bidisperse solids with non-linear isotherm and for arbitrary particle geometry.
Resumo:
The adsorbed film in small cylindrical mesopores is studied by using MCM-41 samples of uniform cylindrical channels as model systems. It is found that at a given relative pressure, the smaller the pore radius, the thicker the adsorbed film is, as postulated by Broekhoff and De Beer. Thermodynamics analysis established that the stability of the adsorbed film is determined by interface curvature and the potential of interaction between adsorbate and adsorbent. A semiempirical equation is proposed to describe the state of stable adsorbed films in cylindrical mesopores. It is also shown to be useful in calculations of pore size distributions of mesoporous solids.
Resumo:
Coating anatase TiO2 onto three different particle supports, activated carbon (AC), gamma -alumina (Al2O3) and silica gel (SiO2), by chemical vapor deposition (CVD) was studied. The effect of the CVD synthesis conditions on the loading rate of anatase TiO2 was investigated. It was found that introducing water vapor during CVD or adsorbing water before CVD was crucial to obtain anatase TiO2 on the surface of the particle supports. The evaporation temperature of precursor, deposition temperature in the reactor, flow rate of carrier gas, and the length of coating time were also important parameters to obtain more uniform and repeatable TiO2 coating. High inflow precursor concentration, high CVD reactor temperature and long coating time tended to cause block problem. Coating TiO2 onto small particles by CVD involved both chemical vapor deposition and particle deposition. It was believed that the latter was the reason for the block problem. In addition, the mechanism of CVD process in this study included two parts, pyrolysis and hydrolysis, and one of them was dominant in the CVD process under different synthesis route. Among the three types of materials, silica gel, with higher surface hydroxyl groups and macropore surface area, was found to be the most efficient support in terms of both anatase TiO2 coating and photocatalytic reaction. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Transport in bidisperse adsorbents is investigated here, while incorporating a two-dimensional model for adsorbate diffusion in the microparticles. The latter treatment permits consideration of the macropore concentration variation around the microparticle surface, and thereby predicts an adsorbate through-flux on the macroscopic coordinate. Such a through-flux has earlier been postulated in the literature, but with unrealistic mechanistic justification. The new model therefore resolves the existing ambiguity in this regard, and covers the entire spectrum of behaviour between microparticle and macropore diffusion control. Computational results show that if the macroscopic adsorbate flux, ignored in the conventional analysis, has a significant contribution to the total flux under macropore control conditions then it is always important even when the microparticle diffusion resistance is not negligible. The effect of various parameters such as relative microparticle size and isotherm heterogeneity on the uptake is also studied and discussed. (C) 1997 Elsevier Science Ltd.
Resumo:
The acceptance-probability-controlled simulated annealing with an adaptive move generation procedure, an optimization technique derived from the simulated annealing algorithm, is presented. The adaptive move generation procedure was compared against the random move generation procedure on seven multiminima test functions, as well as on the synthetic data, resembling the optical constants of a metal. In all cases the algorithm proved to have faster convergence and superior escaping from local minima. This algorithm was then applied to fit the model dielectric function to data for platinum and aluminum.
Resumo:
Most cellular solids are random materials, while practically all theoretical structure-property results are for periodic models. To be able to generate theoretical results for random models, the finite element method (FEM) was used to study the elastic properties of solids with a closed-cell cellular structure. We have computed the density (rho) and microstructure dependence of the Young's modulus (E) and Poisson's ratio (PR) for several different isotropic random models based on Voronoi tessellations and level-cut Gaussian random fields. The effect of partially open cells is also considered. The results, which are best described by a power law E infinity rho (n) (1<n<2), show the influence of randomness and isotropy on the properties of closed-cell cellular materials, and are found to be in good agreement with experimental data. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.