9 resultados para Stress cracking

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The long-term biostability of a novel thermoplastic polyurethane elastomer (Elast-Eon(TM) 2 80A) synthesized using poly(hexamethylene oxide) (PHMO) and poly(dimethylsiloxane) (PDMS) macrodiols has been studied using an in vivo ovine model. The material's biostability was compared with that of three commercially available control materials, Pellethane(R) 2363-80A, Pellethane(R) 2363-55D and Bionate(R) 55D, after subcutaneous implantation of strained compression moulded flat sheet dumbbells in sheep for periods ranging from 3 to 24 months. Scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to assess changes in the surface chemical structure and morphology of the materials. Gel permeation chromatography, differential scanning calorimetry and tensile testing were used to examine changes in bulk characteristics of the materials. The results showed that the biostability of the soft flexible PDMS-based test polyurethane was significantly better than the control material of similar softness, Pellethane(R) 80A, and as good as or better than both of the harder commercially available negative control polyurethanes. Pellethane(R) 55D and Bionate(R) 55D. Changes observed in the surface of the Pellethane(R) materials were consistent with oxidation of the aliphatic polyether soft segment and hydrolysis of the urethane bonds joining hard to soft segment with degradation in Pellethane(R) 80A significantly more severe than that observed in Pellethane(R) 55D. Very minor changes were seen on the surfaces of the Elast-Eon(TM) 2 80A and Bionate(R) 55D materials. There was a general trend of molecular weight decreasing with time across all polymers and the molecular weights of all materials decreased at a similar relative rate. The polydispersity ratio, M-w/M-n, increased with time for all materials. Tensile tests indicated that UTS increased in Elast-Eon(TM) 2 80A and Bionate(R) 55D following implantation under strained conditions. However, ultimate strain decreased and elastic modulus increased in the explanted specimens of all three materials when compared with their unimplanted unstrained counterparts. The results indicate that a soft, flexible PDMS-based polyurethane synthesized using 20% PHMO and 80% PDMS macrodiols has excellent long-term biostability compared with commercially available polyurethanes. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rock bolts have failed by Stress Corrosion Cracking (SCC). This paper presents a detailed examination of the fracture surfaces in an attempt to understand the SCC fracture mechanism. The SCC fracture surfaces, studied using Scanning Electron Microscopy (SEM), contained the following different surfaces: Tearing Topography Surface (TTS), Corrugated Irregular Surface (CIS) and Micro Void Coalescence (MVC). TTS was characterised by a ridge pattern independent of the pearlite microstructure, but having a spacing only slightly coarser than the pearlite spacing. CIS was characterised as porous irregular corrugated surfaces joined by rough slopes. MVC found in the studied rock bolts was different to that in samples failed in a pure ductile manner. The MVC observed in rock bolts was more flat and regular than the pure MVC, being attributed to hydrogen embrittling the ductile material near the crack tip. The interface between the different fracture surfaces revealed no evidence of a third mechanism involved in the transition between fracture mechanisms. The microstructure had no effect on the diffusion of hydrogen nor on the fracture mechanisms. The following SCC mechanism is consistent with the fracture surfaces. Hydrogen diffused into the material, reaching a critical concentration level. The thus embrittled material allowed a crack to propagate through the brittle region. The crack was arrested once it propagated outside the brittle region. Once the new crack was formed, corrosion reactions started producing hydrogen that diffused into the material once again. (C) 2003 Kluwer Academic Publishers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The age hardening, stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of an Al-Zn-Mg-Cu 7175 alloy were investigated experimentally. There were two peak-aged states during ageing. For ageing at 413 K, the strength of the second peak-aged state was slightly higher than that of the first one, whereas the SCC susceptibility was lower, indicating that it is possible to heat treat 7175 to high strength and simultaneously to have high SCC resistance. The SCC susceptibility increased with increasing Mg segregation at the grain boundaries. Hydrogen embrittlement (HE) increased with increased hydrogen charging and decreased with increasing ageing time for the same hydrogen charging conditions. Computer simulations were carried out of (a) the Mg grain boundary segregation using the embedded atom method and (b) the effect of Mg and H segregation on the grain boundary strength using a quasi-chemical approach. The simulations showed that (a) Mg grain boundary segregation in Al-Zn-Mg-Cu alloys is spontaneous, (b) Mg segregation decreases the grain boundary strength, and (c) H embrittles the grain boundary more seriously than does Mg. Therefore, the SCC mechanism of Al-Zn-Mg Cu alloys is attributed to the combination of HE and Mg segregation induced grain boundary embrittlement. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stress corrosion cracks (SCC) had been found in a natural gas transmission pipeline during a dig-up and inspection program. The question was raised as to whether the SCC was active or dormant. This paper describes the resultant investigation to determine if a particular service crack was actively growing. The strategy adopted was to assess the appearance of the fracture surface of the service crack and to compare with expectations from laboratory specimens with active SCC. The conclusions from this study are as follows. To judge whether a crack in the service pipe is active or dormant, it is reasonable to compare the very crack tip of the service crack and a fresh crack in a laboratory sample. If the crack tip of the active laboratory sample is similar to that of the service pipe, it means the crack in the service pipe is likely to be active. From the comparison of the crack tip between the service pipe and the laboratory samples, it appears likely that the cracks in the samples extracted from service were most likely to have been active intergranular stress corrosion cracks. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This review aims to provide a foundation for the safe and effective use of magnesium (Mg) alloys, including practical guidelines for the service use of Mg alloys in the atmosphere and/or in contact with aqueous solutions. This is to provide support for the rapidly increasing use of Mg in industrial applications, particularly in the automobile industry. These guidelines should be firmly based on a critical analysis of our knowledge of SCC based on (1) service experience, (2) laboratory testing and (3) understanding of the mechanism of SCC, as well as based on an understanding of the Mg corrosion mechanism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work reports on a critical measurement to understand the intergranular stress corrosion cracking (IGSCC) of pipeline steels: the atom probe field ion microscope (APFIM) measurement of the carbon concentration at a grain boundary (GB). The APFIM measurement was related to the microstructure and to IGSCC observations. The APFIM indicated that the GB carbon concentration of X70 was similar to 10 at% or less, which correlated with a high resistance to IGSCC for X70. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Evaluation of recent data for hydrogen (H) diffusion in magnesium (Mg) yielded a new equation for the diffusion coefficient of H in Mg. This indicates that there can be significant H transport ahead of a stress corrosion crack in Mg at ambient temperature and that H may be involved in the mechanism of stress corrosion cracking in Mg.

Relevância:

40.00% 40.00%

Publicador: