Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy


Autoria(s): Song, RG; Dietzel, W; Zhang, BJ; Liu, WJ; Tseng, MK; Atrens, A
Contribuinte(s)

S Suresh

Data(s)

01/01/2004

Resumo

The age hardening, stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of an Al-Zn-Mg-Cu 7175 alloy were investigated experimentally. There were two peak-aged states during ageing. For ageing at 413 K, the strength of the second peak-aged state was slightly higher than that of the first one, whereas the SCC susceptibility was lower, indicating that it is possible to heat treat 7175 to high strength and simultaneously to have high SCC resistance. The SCC susceptibility increased with increasing Mg segregation at the grain boundaries. Hydrogen embrittlement (HE) increased with increased hydrogen charging and decreased with increasing ageing time for the same hydrogen charging conditions. Computer simulations were carried out of (a) the Mg grain boundary segregation using the embedded atom method and (b) the effect of Mg and H segregation on the grain boundary strength using a quasi-chemical approach. The simulations showed that (a) Mg grain boundary segregation in Al-Zn-Mg-Cu alloys is spontaneous, (b) Mg segregation decreases the grain boundary strength, and (c) H embrittles the grain boundary more seriously than does Mg. Therefore, the SCC mechanism of Al-Zn-Mg Cu alloys is attributed to the combination of HE and Mg segregation induced grain boundary embrittlement. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Identificador

http://espace.library.uq.edu.au/view/UQ:68350

Idioma(s)

eng

Publicador

Pergamon

Palavras-Chave #Materials Science, Multidisciplinary #Metallurgy & Metallurgical Engineering #Stress Corrosion Cracking #Hydrogen Embrittlement #Grain Boundary Segregation #Al-zn-mg-cu Alloys #Grain-boundary Segregation #Strength Aluminum-alloys #Embedded-atom-method #Computer-simulation #Electron Microscope #Assisted Fracture #Microstructure #Magnesium #Surfaces #Metals #C1 #291499 Materials Engineering not elsewhere classified #671199 Transport equipment not elsewhere classified
Tipo

Journal Article