85 resultados para Modified reflected normal loss function
em University of Queensland eSpace - Australia
Resumo:
The homeostasis of glutamate is critical to normal brain function; deficiencies in the regulation of extracellular glutamate are thought to be a major determinant of damage in hypoxic brains. Extracellular levels of glutamate are regulated mainly by plasmalemmal glutamate transporters. We have evaluated the distribution of the glutamate transporter GLAST and two splice variants of GLT-1 in the hypoxic neonatal pig brain using this as model of neonatal humans. In response to severe hypoxic insults, we observe a rapid loss of two glial glutamate transporters from specific brain regions, such as the CA1 region of the hippocampus, but not the dentate gyrus. The spatial distribution of loss accords with patterns of damage in these brains. Conversely, we demonstrate that hypoxia evokes the expression of a splice variant of GLT-1 in neurons. We suggest that this expression may be induced in response to elevated extracellular glutamate around these neurons, and that this splice variant may represent a useful marker for direct quantification of the extent of likely neuronal damage in hypoxic brains. © 2004 Elsevier B.V. All rights reserved.
Resumo:
The cellular mechanisms coupling mechanical loading with bone remodeling remain unclear. In the CNS, the excitatory amino acid glutamate (Glu) serves as a potent neurotransmitter exerting its effects via various membrane Glu receptors (GluR). Nerves containing Glu exist close to bone cells expressing functional GluRs. Demonstration of a mechanically sensitive glutamate/aspartate transporter protein and the ability of glutamate to stimulate bone resorption in vitro suggest a role for glutamate linking mechanical load and bone remodeling. We used immunohistochemical techniques to identify the expression of N-methyl-D-aspartate acid (NMDA) and non-NMDA (AMPA or kainate) ionotropic GluR subunits on bone cells in vivo. In bone sections from young adult rats, osteoclasts expressed numerous GluR subunits including AMPA (GluR2/3 and GluR4), kainic acid (GluR567) and NMDA (NMDAR2A, NMDAR2B and NMDAR2C) receptor subtypes. Bone lining cells demonstrated immunoexpression for NMDAR2A, NMDAR2B, NMDAR2C, GluR567, GluR23, GuR2 and GluR4 subunits. Immunoexpression was not evident on osteocytes, chondrocytes or vascular channels. To investigate the effects of mechanical loading on GluR expression, we used a Materials Testing System (MTS) to apply 10 N sinusoidal axial compressive loads percutaneously to the right limbs (radius/ulna, tibia/fibula) of rats. Each limb underwent 300-load cycles/day (cycle rate, 1 Hz) for 4 consecutive days. Contralateral, non-loaded limbs served as controls. Mechanically loaded limbs revealed a load-induced loss of immunoexpression for GluR2/3, GluR4, GluR567 and NMDAR2A on osteoclasts and NMDAR2A, NMDAR2B, GluR2/3 and GluR4 on bone lining cells. Both neonatal rabbit and rat osteoclasts were cultured on bone slices to investigate the effect of the NMDA receptor antagonist, MK801, and the AMPA/kainic acid receptor antagonist, NBQX, on osteoclast resorptive activity in vitro. The inhibition of resorptive function seen suggested that both NMDAR and kainic acid receptor function are required for normal osteoclast function. While the exact role of ionotropic GluRs in skeletal tissue remains unclear, the modulation of GluR subunit expression by mechanical loading lends further support for participation of Glu as a mechanical loading effector. These ionotropic receptors appear to be functionally relevant to normal osteoclast resorptive activity. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
CIC-5 is a chloride (Cl-) channel expressed in renal tubules and is critical for normal tubular function. Loss of function nonsense or missense mutations in CIC-5 are associated with Dent's disease, a condition in which patients present with low molecular weight (LMW) proteinuria (including albuminuria), hypercalciuria and nephrolithiasis. Several key studies in CIC-5 knockout mice have shown that the proteinuria results from defective tubular reabsorption of proteins. CIC-5 is typically regarded as an intracellular Cl- channel and thus the defect in this receptor-mediated uptake pathway was initially attributed to the failure of the early endosomes to acidify correctly. CIC-5 was postulated to play a key role in transporting the Cl- ions required to compensate for the movement of H+ during endosomal acidification. However, more recent studies suggest additional roles for CIC-5 in the endocytosis of albumin. CIC-5 is now known to be expressed at low levels at the cell surface and appears to be a key component in the assembly of the macromolecular complex involved in protein endocytosis. Furthermore, mutations in CIC-5 affect the trafficking of v-H+-ATPase and result in decreased expression of the albumin receptor megalin/cubulin. Thus, the expression of CIC-5 at the cell surface as well as its presence in endosomes appears to be essential for normal protein uptake by the renal proximal tubule. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We have studied the mechanism by which an acidic domain (amino acids 515-583) of the aromatic hydrocarbon receptor (AhR) transactivates a target gene. Studies with glutathione S-transferase fusion proteins demonstrate that the wild-type acidic domain associates in vitro with Myb-binding protein la, whereas a mutant domain (F542A, 1569A) does not. AhR-defective cells reconstituted with an AhR containing the wild-type acidic domain exhibit normal AhR function; however, cells reconstituted with an AhR containing the mutant acidic domain do not function normally. Transient transfection of Myb-binding protein la into mouse hepatoma cells is associated with augmentation of AhR-dependent gene expression. Such augmentation does not occur when Myb-binding protein la is transfected into AhR-defective cells that have been reconstituted with an AhR that lacks the acidic domain. We infer that 1) Myb-binding protein la associates with AhR, thereby enhancing transactivation, and 2) the presence of AhR's acidic domain is both necessary and sufficient for Myb-binding protein la to increase AhR-dependent gene expression.
Resumo:
In four experiments ERPs to emotional (negative and positive) and neutral stimuli were examined as a function of participants’ trait anxiety and repressivedefensiveness. The experiments investigated the time course of attentional bias in the processing of such stimuli. Pictures of angry, happy, and neutral faces were used in two of the experiments and pictures ofmutilated, happy, and neutral faces were used in the others. ERP’s to emotional and neutral stimuli were recorded from parietal, temporal, and frontal sites. Analysis of the P3 component indicated that the peak magnitude of the P3 at the parietal and temporal sites reflected an interactive function of trait anxiety and defensiveness. Repressors (low reported anxiety, high defensiveness) showed a consistent pattern of greater P3 magnitude at the parietal and temporal sites for emotional faces (angry, happy, and mutilated) than did high-anxious and low-anxious participants. Participants did not differ in P3 magnitude when ERPs to neutral stimuli were investigated (e.g., a fixation cross). The findings indicate that Repressors dedicate greater processing resources to emotional material, as compared to neutral material, than either the high-anxious or low-anxious individuals. Results of the four experiments are discussed within the theoretical framework of Derakshan and Eysenck (1998). The importance of understanding the role of differences in information processing, in the experience and avoidance of emotional information, as a function of trait anxiety and defensiveness is emphasized.
Resumo:
Immunocytochemical techniques were used to examine the distribution of neurons immunoreactive (-ir) for nitric oxide synthase (nNOS), somatostatin (SOM), neuropeptide Y (NPY), parvalbumin (PV), calbindin (CB) and calretinin (CH), in the inferotemporal gyros (Brodmann's area 21) of the human neocortex. Neurons that colocalized either nNOS or SOM with PV, CB or CR were also identified by double-labeling techniques. Furthermore, glutamate receptor subunit profiles (GluR1, GluR2/3, GluR2/4, GluR5/6/7 and NMDAR1) were also determined for these cells. The number and distribution of cells containing nNOS, SOM, NPY, PV, CB or CR differed for each antigen. In addition, distinct subpopulations of neurons displayed different degrees of colocalization of these antigens depending on which antigens were compared. Moreover, cells that contained nNOS, SOM, NPY, PV, GB or CR expressed different receptor subunit profiles. These results show that specific subpopulations of neurochemically identified nonpyramidal cells may be activated via different receptor subtypes. As these different subpopulations of cells project to specific regions of pyramidal calls, facilitation of subsets of these cells via different receptor subunits may activate different inhibitory circuits. Thus, various distinct, but overlapping, inhibitory circuits may act in concert in the modulation of normal cortical function, plasticity and disease.
Resumo:
The aim of this study was to determine the pharmacokinetic profile of the normal recommended dose of ceftriaxone in critically ill patients and to establish whether the current daily dosing recommendation maintains plasma concentrations adequate for antibacterial efficacy. Ceftriaxone at a recommended dose of 2 g iv was administered od to 12 critically ill patients with severe sepsis and normal serum creatinine concentrations. Blood samples were taken at predetermined intervals over the first 24 h and on day 3 for measurement of ceftriaxone concentrations. There was wide variability in drug disposition, explained by the presence of variable renal function and identified by the measurement of creatinine clearance. In nine patients with normal renal function, there was a high level of creatinine clearance(mean +/- S.D., 41 +/- 12 mL/min) and volume of distribution (20 +/- 3.3 L), which resulted in an elimination half-life of 6.4 +/- 1.1 h. In comparison with normal subjects, ceftriaxone clearance was increased 100%, volume of distribution increased 90% and the elimination half-life was similar. Three patients had substantially suboptimal plasma ceftriaxone concentrations. We confirm previous findings that ceftriaxone clearance in critically ill patients correlates with renal clearance by glomerular filtration. The elimination half-life is prolonged (21.4 +/- 9.8 h) in critically ill patients with renal failure when compared with previously published data in non-critically ill patients with renal failure. We conclude that in critically ill patients with normal renal function, inadequate plasma concentrations may result following od bolus dosing of ceftriaxone. Drug accumulation may occur in critically ill patients with renal failure.
Resumo:
Complete fetal bladder outlet obstruction was first diagnosed in a fetus at 13.5 weeks. After sequential vesico-centesis had shown good renal function, a vesico-amniotic shunt was inserted at 17 weeks with a Rodeck catheter. The procedure was successful and amniotic fluid volume re-accumulated to normal levels. A detailed scan at 20 weeks showed that the distal free end of the catheter was wound round the left fetal thigh. As the fetus grew, there was progressive constriction of the fetal thigh by the catheter. By 29 weeks, Doppler blood flow changes to the left leg were apparent. Fetoscopic surgery was performed at 30 weeks to release the constriction. The catheter was divided successfully, but the divided end of the shunt subsequently retracted into the fetal abdomen, producing urinary ascites, bilateral hydroureter and hydronephrosis. The baby was delivered at 31.5 weeks in good condition. Endoscopic resection of anterior and posterior urethral valves was performed at 6 months of age. At 2 years, the child has normal renal function, growth parameters and developmental milestones. Mild indentation of the left thigh was still apparent, although there was no functional impairment. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
Infection frequently causes exacerbations of chronic obstructive pulmonary disease (COPD). Mannose-binding lectin (MBL) is a pattern-recognition receptor that assists in clearing microorganisms. Polymorphisms in the MBL2 gene reduce serum MBL levels and are associated with risk of infection. We studied whether the MBL2 codon 54 B allele affected serum MBL levels, admissions for infective exacerbation in COPD and disease susceptibility. Polymorphism frequency was determined by PCR-RFLP in 200 COPD patients and 104 smokers with normal lung function. Serum MBL was measured as mannan-binding activity in a subgroup of 82 stable COPD patients. Frequency of COPD admissions for infective exacerbation was ascertained for a 2-year period. The MBL2 codon 54 B allele reduced serum MBL in COPD patients. In keeping, patients carrying the low MBL-producing B allele had increased risk of admission for infective exacerbation (OR 4.9, P-corrected = 0.011). No association of MBL2 genotype with susceptibility to COPD was detected. In COPD, serum MBL is regulated by polymorphism at codon 54 in its encoding gene. Low MBL-producing genotypes were associated with more frequent admissions to hospital with respiratory infection, suggesting that the MBL2 gene is disease-modifying in COPD. MBL2 genotype should be explored prospectively as a prognostic marker for infection risk in COPD.
Resumo:
Patient outcomes in transplantation would improve if dosing of immunosuppressive agents was individualized. The aim of this study is to develop a population pharmacokinetic model of tacrolimus in adult liver transplant recipients and test this model in individualizing therapy. Population analysis was performed on data from 68 patients. Estimates were sought for apparent clearance (CL/F) and apparent volume of distribution (V/F) using the nonlinear mixed effects model program (NONMEM). Factors screened for influence on these parameters were weight, age, sex, transplant type, biliary reconstructive procedure, postoperative day, days of therapy, liver function test results, creatinine clearance, hematocrit, corticosteroid dose, and interacting drugs. The predictive performance of the developed model was evaluated through Bayesian forecasting in an independent cohort of 36 patients. No linear correlation existed between tacrolimus dosage and trough concentration (r(2) = 0.005). Mean individual Bayesian estimates for CL/F and V/F were 26.5 8.2 (SD) L/hr and 399 +/- 185 L, respectively. CL/F was greater in patients with normal liver function. V/F increased with patient weight. CL/F decreased with increasing hematocrit. Based on the derived model, a 70-kg patient with an aspartate aminotransferase (AST) level less than 70 U/L would require a tacrolimus dose of 4.7 mg twice daily to achieve a steady-state trough concentration of 10 ng/mL. A 50-kg patient with an AST level greater than 70 U/L would require a dose of 2.6 mg. Marked interindividual variability (43% to 93%) and residual random error (3.3 ng/mL) were observed. Predictions made using the final model were reasonably nonbiased (0.56 ng/mL), but imprecise (4.8 ng/mL). Pharmacokinetic information obtained will assist in tacrolimus dosing; however, further investigation into reasons for the pharmacokinetic variability of tacrolimus is required.
Resumo:
Background: False-negative interpretations of do-butamine stress echocardiography (DSE) may be associated with reduced wall stress. using measurements of contraction, we sought whether these segments were actually ischemic but unrecognized or showed normal contraction. Methods. We studied 48 patients (29 men; mean age 60 +/- 10 years) with normal regional function on the basis of standard qualitative interpretation of DSE. At coronary angiography within. 6 months of DSE, 32 were identified as having true-negative and 16 as having false-negative results of DSE. Three apical views were used to measure regional function with color Doppler tissue, integrated backscatter, and strain rate imaging. Cyclic variation of integrated backscatter was measured in 16 segments, and strain rate and peak systolic strain was calculated in 6 walls at rest and peak stress. Results. Segments with false-negative results of DSE were divided into 2 groups with and without low wall stress according to previously published cut-off values. Age, sex, left ventricular mass, left ventricular geometric pattern, and peak workload were not significantly different between patients with true and false-negative results of DSE. Importantly, no significant differences in cyclic variation and strain parameters at rest and peak stress were found among segments with true-and false-negative results of DSE with and without low wall stress. Stenosis severity had no influence on cyclic variation and strain parameters at peak stress. Conclusions: False-negative results of DSE reflect lack of ischemia rather than underinterpretation of regional left ventricular function. Quantitative markers are unlikely to increase the sensitivity of DSE.
Resumo:
The assessment of left ventricular (LV) dysfunction has become the most frequent indication for echocardiography, a growth that has been driven by the epidemic of heart failure. The value of echocardiography for assessing LV dysfunction is unquestionable, the quantification of both LV systolic and diastolic dysfunction being a reliable indicator of mortality. 1,2 Nonetheless, whereas the ejection fraction and diastolic assessment are important clinical parameters, they are highly dependent on loading and may produce abnormal results under unusual loading conditions. Moreover, in a number of situations where the LV is evaluated, although the overall function is an important finding, the referring clinician is really requesting an assessment of the nature of the underlying myocardial tissue (Table 1). Indeed, in some situations (eg, among family members of patients with a cardiomyopathy) questions arise about the presence of pathology despite the presence of normal ventricular function. Traditionally, it has been difficult to obtain this information because of the lack of sufficiently sensitive parameters, but a number of new developments have shown such success in this area that the clinical application of tools to assess the myocardium in routine practice appears finally to be a realistic proposition.
Resumo:
Background - Limited data describe the cardiovascular benefit of HMG-CoA reductase inhibitors (statins) in people with moderate chronic kidney disease (CKD). The objective of this analysis was to determine whether pravastatin reduced the incidence of cardiovascular events in people with or at high risk for coronary disease and with concomitant moderate CKD. Methods and Results - We analyzed data from the Pravastatin Pooling Project (PPP), a subject-level database combining results from 3 randomized trials of pravastatin ( 40 mg daily) versus placebo. Of 19 700 subjects, 4491 ( 22.8%) had moderate CKD, defined by an estimated glomerular filtration rate of 30 to 59.99 mL/min per 1.73 m(2) body surface area. The primary outcome was time to myocardial infarction, coronary death, or percutaneous/surgical coronary revascularization. Moderate CKD was independently associated with an increased risk of the primary outcome ( adjusted HR 1.26, 95% CI 1.07 to 1.49) compared with those with normal renal function. Among the 4491 subjects with moderate CKD, pravastatin significantly reduced the incidence of the primary outcome ( HR 0.77, 95% CI 0.68 to 0.86), similar to the effect of pravastatin on the primary outcome in subjects with normal kidney function ( HR 0.78, 95% CI 0.65 to 0.94). Pravastatin also appeared to reduce the total mortality rate in those with moderate CKD ( adjusted HR 0.86, 95% CI 0.74 to 1.00, P = 0.045). Conclusions - Pravastatin reduces cardiovascular event rates in people with or at risk for coronary disease and concomitant moderate CKD, many of whom have serum creatinine levels within the normal range. Given the high risk associated with CKD, the absolute benefit that resulted from use of pravastatin was greater than in those with normal renal function.