22 resultados para Mercy killing
em University of Queensland eSpace - Australia
Resumo:
Activated macrophages and osteoclasts express high amounts of tartrate-resistant acid phosphatase (TRACP, acp5). TRACP has a binuclear iron center with a redox-active iron that has been shown to catalyze the formation of reactive oxygen species (ROS) by Fenton's reaction. Previous Studies Suggest that ROS generated by TRACP may participate in degradation of endocytosed bone matrix products in resorbing osteoclasts and degradation of foreign Compounds during. antigen presentation in activated macrophages. Here we have compared free radical production in macrophages of TRACP overexpressing (TRACP +) and wild-type (WT) mice. TRACP overexpression increased both ROS levels and Superoxide production. Nitric oxide production was increased in activated macrophages or WT mice, but not in TRACP+ mice, Macrophages from TRACP+ mice showed increased capacity or bacterial killing. Recombinant TRACP enzyme was capable of bacterial killing in the presence of hydrogen peroxide. These results suggest that TRACP has an important biological function in immune defense systern.
Resumo:
The breast cancer susceptibility gene Brca1 encodes a large multi-functional protein which is implicated as a caretaker of the genome, through its role in regulation of DNA damage response pathways, including apoptosis. Here we show that in mice expressing a dominant-negative Brca1 transgene on a BALB/c background, vaginal entrance remodeling is inhibited, and that the incidence of this phenotype is increased on a p53 +/- genotype. Given that this developmental process is mediated primarily by apoptosis, we hypothesized that disruption of BRCA1 may confer a resistance to apoptosis in normal epithelial cells. Consistent with this, we show that expression of this transgene in vitro leads to resistance to ionizing radiation induced cell killing in mammary epithelial cells. This is the first time that BRCA1 has been implicated in an apoptosis-mediated normal developmental process.
Resumo:
Defenses against oxidative stress are crucial for the survival of the pathogens Neisseria meningitidis and Neisseria gonorrhoeae. An Mn(II) uptake system is involved in manganese (Mn)-dependent resistance to superoxide radicals in N. gonorrhoeae. Here, we show that accumulation of Mn also confers resistance to hydrogen peroxide killing via a catalase-independent mechanism. An mntC mutant of N. meningitidis is susceptible to oxidative killing, but supplementation of growth media with Mn does not enhance the organism's resistance to oxidative killing. N. meningitidis is able to grow in the presence of millimolar levels of Mn ion, in contrast to N. gonorrhoeae, whose growth is retarded at Mn concentrations >100 mumol/L, indicating that Mn homeostasis in the 2 species is probably quite different. N. meningitidis superoxide dismutase B plays a role in protection against oxidative killing. However, a sodC mutant of N. meningitidis is no more sensitive to oxidative killing than is the wild type. A cytochrome c peroxidase (Ccp) is present in N. gonorrhoeae but not in N. meningitidis. Investigations of a ccp mutant revealed a role for Ccp in protection against hydrogen peroxide killing. These differences in oxidative defenses in the pathogenic Neisseria are most likely a result of their localization in different ecological niches.
Resumo:
Conventional chemotherapeutic drugs target proliferating cells, relying on often small differences in drug sensitivity of tumour cells compared to normal tissue to deliver a therapeutic benefit. Consequently, they have significant limiting toxicities and greatly reduced efficacy against nonproliferating compared to rapidly proliferating tumour cells. This lack of selectivity and inability to kill nonproliferating cells that exist in tumours with a low mitotic index are major failings of these drugs. A relatively new class of anticancer drugs, the histone deacetylase inhibitors (HDI), are selectively cytotoxic, killing tumour and immortalized cells but normal tissue appears resistant. Treatment of tumour cells with these drugs causes both G1 phase cell cycle arrest correlated with increase p21 expression, and cell death, but even the G1 arrested cells died although the onset of death was delayed. We have extended these observations using cells that were stably arrested by either serum starvation or expression of the cyclin-dependent kinase inhibitor p16(ink4a). We report that histone deacetylase inhibitors have similar cytotoxicity towards both proliferating and arrested tumour and immortalized cells, although the onset of apoptosis is delayed by 24 h in the arrested cells. Both proliferating and arrested normal cells are unaffected by HDI treatment. Thus, the histone deacetylase inhibitors are a class of anticancer drugs that have the desirable features of being tumour-selective cytotoxic drugs that are equally effective in killing proliferating and nonproliferating tumour cells and immortalized cells. These drugs have enormous potential for the treatment of not only rapidly proliferating tumours, but tumours with a low mitotic index.
Resumo:
Burn sepsis is a leading cause of mortality and morbidity in patients with major burns. The use of topical anti-microbial agents has helped improve the survival in these patients. There are a number of anti-microbials available, one of which, Silvazine(TM) (1% silver sulphadiazine (SSD) and 0.2% chlorhexidine digluconate), is used only in Australasia. No study, in vitro or clinical, had compared Silvazine(TM) with the new dressing Acticoat(TM). This study compared the anti-microbial activity of Silvazine(TM), Acticoa(TM) and 1% silver sulphadiazine (Flamazine(TM)) against eight common burn wound pathogens. Methods: Each organism was prepared as a suspension. A 10 mul inoculum of the chosen bacterial isolate (representing approximately between 104 and 105 total bacteria) was added to each of four vials, followed by samples of each dressing and a control. The broths were then incubated and 10 mul loops removed at specified intervals and transferred onto Horse Blood Agar. These plates were then incubated for 18 hours and a colony count was performed. Results: The data demonstrates that the combination of 1% SSD and 0.2% chlorhexidine digluconate (Silvazine(TM)) results in the most effective killing of all bacteria. SSD and Acticoat(TM) had similar efficacies against a number of isolates, but Acticoat(TM) seemed only bacteriostatic against E. faecalis and methicillin-resistant Staphylococcus aureus. Viable quantities of Enterobacter cloacae and Proteus mirabilis rei named at 24 h. Conclusion: The combination of 1% SSD and 0.2% chlorhexidine digluconate (Silvazine(TM)) is a more effective anti-microbial against a number of burn wound pathogens in this in vitro study. A clinical study of its in vivo anti-microbial efficacy is required. (C) 2003 Elsevier Ltd and ISBI. All rights reserved.
Resumo:
Is it ever justifiable to target non-combatants deliberately? This article assesses Michael Walzer's claim that the deliberate targeting of non-combatants may be justifiable during 'supreme emergencies', a view that has received some support but that has elicited little debate. It argues that the supreme emergencies exception to the prohibition on targeting non-combatants is problematic for at least four reasons. First, its utilitarianism contradicts Walzer's wider ethics of war based on a conception of human rights. Second, the exception may undermine the principle of non-combatant immunity. Third, it is based on a historical fallacy. Finally, it is predicated on a strategic fallacy-the idea that killing noncombatants can win wars. The case for rejecting the exception, however, has been opposed by those who persuasively argue that it is wrong to tie leaders' hands when they confront supreme emergencies. The final part of the article addresses this question and suggests that the principle of proportionality may give political leaders room for manoeuvre in supreme emergencies without permitting them deliberately to target non-combatants.
Resumo:
Neisseria gonorrhoeae has well-characterized oxidative stress defense systems that protect against oxidative killing in in vitro assays. In contrast, mutant strains of N. gonorrhoeae lacking oxidative stress defenses are identical to the wild type when tested in an ex vivo survival assay using human polymorphonuclear leukocytes.
Resumo:
The cueO gene of Escherichia coli encodes a multi-copper oxidase, which contributes to copper tolerance in this bacterium. It was observed that a cueO mutant was highly sensitive to killing by copper ions when cells were grown on defined minimal media. Copper sensitivity was correlated with accumulation of copper in the mutant strain. Growth of the cueO mutant in the presence of copper could be restored by addition of divalent zinc and manganese ions or ferrous iron but not by other first row transition metal ions or magnesium ions. Copper toxicity towards a cueO mutant Could also be suppressed by addition of the superoxide quencher 1,2-dihydroxybenzene-3,5-disulfonic acid (tiron), suggesting that a primary cause of copper toxicity is the copper-catalyzed production of superoxide anions in the cytoplasm. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
The development of colorectal cancer is a major complication for patients with chronic idiopathic colitis. Colitis-associated tumours tend to occur at a younger age and be more aggressive than sporadic colorectal cancers. While we have previously associated the presence of tumour-infiltrating lymphocytes (TILs) and increased apoptosis in sporadic colorectal cancer with high-level microsatellite instability and improved prognosis, little is known of the relationship between these variables in colitis-associated colorectal cancer. The aim of this study was to correlate TILs and tumour cell apoptosis in colitis-associated neoplasms stratified according to microsatellite instability. Twenty tumour and 11 dysplastic samples resected from 21 patients with long-standing colitis were analysed for microsatellite instability at 10 microsatellite markers. TIL distribution (CD3, CD8) and function (granzyme B) were quantified by immunohistochemistry. Neoplastic cell apoptosis was assessed using the M30 CytoDEATH antibody. These findings were compared with 40 microsatellite stable (MSS) sporadic colorectal cancers previously evaluated for TILs and neoplastic apoptosis. Low-level microsatellite instability was found in 1/20 colitis-associated tumours. All other colitis-associated lesions were designated MSS. CD3(+) and CD8(+) TIL counts were significantly higher in colitis-associated lesions compared with NISS sporadic colorectal cancer (p < 0.0001, p = 0.001 respectively). Despite their higher TIL density, colitis-associated tumours were more likely to present late (Dukes' stage C or D) (P = 0.02). Functionally, colitis-associated TILs demonstrated significantly less granzyme B expression compared to sporadic cancers (p = 0.002). The level of tumour cell apoptosis was similar between the two groups (sporadic, 1.53%; colitis cancers, 1.45%). In conclusion, NISS colitis-associated tumours have a higher prevalence of CD3(+)/CD8(+) TILs but no associated increase in tumour cell killing by apoptosis. Unlike cytotoxic T cells in sporadic colorectal cancer, TILs do not appear to enhance the prognosis of colitis-associated colorectal cancer. This may be related to an impairment of granzyme B expression within these lesions. Copyright (c) 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
Under some circumstances it may be desirable to repel herbivorous pests (e. g. goats and wallabies) from plants (e. g. horticultural or forestry seedlings) rather than to kill them. These circumstances may include using these animals as a resource at a later time, and there may also be welfare, public perception or legislative issues where repelling animals from particular plants or area is preferable to killing them. The first experiment tested the efficacy of 5 different materials (tiger fecal extract, maggot brew-the liquid exudate from a flyblown goat, capsaicin, dog urine, and burnt goat hair, skin and carcass+fat) to repel groups of goats in a feedlot pen from 1 trough of feed when another trough of feed was available to them to eat. Each repellent was tested on 5 groups of mixed age female goats for periods of 3 days. All 5 groups were exposed to the 5 repellents. Both tiger fecal extract and maggot brew reduced intake of feed from the 'protected' feed trough and significantly (P < 0.05) delayed 'normal' feeding behaviour by more than 5 h from that trough. The repellents became less effective with repeated use even with different groups of goats. The reduction in effectiveness was indicated by higher intakes of feed and earlier feeding from the protected trough. This habituation to the repellents, where the effectiveness is reduced with repeated exposure, is of concern. In the second experiment, we selected the most effective repellent (tiger fecal extract) and tested its efficacy under similar conditions, after the repellent had been mixed with a carrier (bentonite) in an endeavour to increase the duration of its effectiveness. This repellent was significantly more effective in repelling groups of 3 goats in a feedlot pen from 1 trough of feed for 3 days, when another trough of feed was available to them to eat.