66 resultados para HUMAN POSTMORTEM BRAIN
em University of Queensland eSpace - Australia
Resumo:
Alcoholism results in changes in the human brain that reinforce the cycle of craving and dependency, and these changes are manifest in the pattern of expression of proteins in key cells and brain areas. Described here is a proteomics-based approach aimed at determining the identity of proteins in the superior frontal cortex (SFC) of the human brain that show different levels of expression in autopsy samples taken from healthy and long-term alcohol abuse subjects. Soluble protein fractions constituting pooled samples combined from SFC biopsies of four well-characterized chronic alcoholics (mean consumption > 80 g ethanol/day throughout adulthood) and four matched controls (< 20 g/day) were generated. Two-dimensional electrophoresis was performed in triplicate on alcoholic and control samples and the resultant protein profiles analyzed for differential expression. Overall, 182 proteins differed by the criterion of twofold or more between case and control samples. Of these, 139 showed significantly lower expression in alcoholics, 35 showed significantly higher expression, and 8 were new or had disappeared. To date, 63 proteins have been identified using MALDI-MS and MS-MS. The finding that the expression level of differentially expressed proteins is preponderantly lower in the alcoholic brain is supported by recent results from parallel studies using microarray mRNA transcript.
Resumo:
A competitive RT-PCR assay was used to quantify the expression of the GABA(A) receptor beta(1), beta(2) and beta(3) isoform mRNA transcripts in the superior frontal cortex and motor cortex of 21 control and 22 alcoholic cases. A single set of primers was designed that permitted amplification of all three transcripts and the internal standard simultaneously; differentiation of the individual transcripts was achieved by restriction enzyme digestion. Construction of a standard curve, using the internal standard and a concentration range of beta(2) cRNA-enabled quantitation of mRNA expression levels. No significant difference in mRNA expression was found between the control and alcoholic case groups in either the superior frontal or motor cortex for the beta(2) or beta(3) isoforms. A significant interaction was found between isoform and area, although, the two case groups did not partition on this measure. The interaction was due to a significant difference between superior frontal and motor cortex for the beta(3) isoform; this regional comparison was not significant for beta(2) mRNA. Age at death and post-mortem delay (PMD) had no significant effect on beta mRNA expression in either case group in either region. A beta(1) signal could not be detected in the RT-PCR assay. (C) 2004 Elsevier Ltd. All rights reserved.
GABA(A) receptor beta isoform protein expression in human alcoholic brain: interaction with genotype
Resumo:
A complex set of axonal guidance mechanisms are utilized by axons to locate and innervate their targets. In the developing mouse forebrain, we previously described several midline glial populations as well as various guidance molecules that regulate the formation of the corpus callosum. Since agenesis of the corpus callosum is associated with over 50 different human congenital syndromes, we wanted to investigate whether these same mechanisms also operate during human callosal development. Here we analyze midline glial and commissural development in human fetal brains ranging from 13 to 20 weeks of gestation using both diffusion tensor magnetic resonance imaging and immunohistochemistry. Through our combined radiological and histological studies, we demonstrate the morphological development of multiple forebrain commissures/decussations, including the corpus callosum, anterior commissure, hippocampal commissure, and the optic chiasm. Histological analyses demonstrated that all the midline glial populations previously described in mouse, as well as structures analogous to the subcallosal sling and cingulate pioneering axons, that mediate callosal axon guidance in mouse, are also present during human brain development. Finally, by Northern blot analysis, we have identified that molecules involved in mouse callosal development, including Slit, Robo, Netrin1, DCC, Nfia, Emx1, and GAP-43, are all expressed in human fetal brain. These data suggest that similar mechanisms and molecules required for midline commissure formation operate during both mouse and human brain development. Thus, the mouse is an excellent model system for studying normal and pathological commissural formation in human brain development. (c) 2006 Wiley-Liss, Inc.
Resumo:
Long-term alcohol abuse by human subjects leads to selective brain damage that is restricted in extent and variable in severity. Within the cerebral cortex, neuronal loss is most marked in the superior frontal cortex and relatively mild in motor cortex. Cirrhotic alcoholics and subjects with alcohol-related Wernicke-Korsakoff syndrome show more severe and more extensive damage than do uncomplicated cases. Accumulating evidence suggests that the likelihood of developing alcohol dependency is associated with one or more genetic markers. In previous work we showed that GABAA receptor functionality, and the subunit isoform expression that underlies this, differed in region- and disease-specific ways between alcoholics and controls. By contrast, glutamate receptor (NMDA, KA, AMPA) differences were muted or absent. Here we asked if genotype differentiated the form, pharmacology, or expression of glutamate and GABA receptors in pathologically vulnerable and spared cortical regions, with a view to determining whether such subject factors might influence the severity of alcohol-induced brain damage. Cerebrocortical tissue was obtained at autopsy under informed, written consent from uncomplicated and alcoholic-cirrhotic Caucasian (predominantly Anglo-Celtic) cases, together with matched controls and cases with cirrhosis of non-alcoholic origin. All subjects had pathological confirmation of liver and brain diagnosis; none had been polydrug abusers. Samples were processed for synaptic membrane receptor binding, mRNA analysis by quantitative RT-PCR, and protein analysis by Western blot. Genotyping was performed by PCR methods, in the main using published primers. Several genetic markers differentiated between our alcoholic and control subjects, including the GABAA receptor 2 subunit (GABB2) gene ( 2 (3) 10.329, P 0.01), the dopamine D2 receptor B1 (DRD2B) allele ( 2 (3) 10.109, P 0.01) and a subset of the alcohol dehydrogenase-3 (ADH3) alleles ( 2 (2) 4.730, P 0.05). Although neither the type-2 glutamate transporter (EAAT2) nor the serotonin transporter (5HTT) genes were significantly associated with alcoholism, only EAAT2 heterozygotes showed a significant association between ADH3 genotype and alcoholism ( 2 (3) 7.475, P 0.05). Other interactions between genotypes were also observed. DRD2A, DRD2B, GABB2, EAAT2 and 5HTT genotypes did not divide alcoholic cases and controls on NMDA receptor parameters, although in combined subjects there was a significant DRD2B X Area Interaction with glutamateNMDA receptor efficacy (F(1,57) 4.67; P 0.05), measured as the extent of glutamate-enhanced MK801 binding. In contrast, there was a significant Case-group X ADH3 X Area Interaction with glutamateNMDA receptor efficacy (F(3,57) 2.97; P 0.05). When GABAA receptor subunit isoform expression was examined, significant Case-group X Genotype X Area X Isoform interactions were found for EAAT2 with subunit mRNA (F(1,37) 4.22; P0.05), for GABB2 with isoform protein (F(1,37) 5.69; P 0.05), and for DRD2B with isoform protein (F(2,34)5.69; P0.05). The results suggest that subjects’ genetic makeup may modulate the effectiveness of amino acid-mediated transmission in different cortical regions, and thereby influence neuronal vulnerability to excitotoxicity.
Resumo:
The superior frontal cortex (SFC) is selectively damaged in chronic alcohol abuse, with localized neuronal loss and tissue atrophy. Regions such as motor cortex show little neuronal loss except in severe co-morbidity (liver cirrhosis or WKS). Altered gene expression was found in microarray comparisons of alcoholic and control SFC samples [1]. We used Western blots and proteomic analysis to identify the proteins that also show differential expression. Tissue was obtained at autopsy under informed, written consent from uncomplicated alcoholics and age- and sex-matched controls. Alcoholics had consumed 80 g ethanol/day chronically (often, 200 g/day for 20 y). Controls either abstained or were social drinkers ( 20 g/day). All subjects had pathological confirmation of liver and brain diagnosis; none had been polydrug abusers. Samples were homogenized in water and clarified by brief centrifugation (1000g, 3 min) before storage at –80°C. For proteomics the thawed suspensions were centrifuged (15000g, 50 min) to prepare soluble fractions. Aliquots were pooled from SFC samples from the 5 chronic alcoholics and 5 matched controls used in the previous microarray study [1]. 2-Dimensional electrophoresis was performed in triplicate using 18 cm format pH 4–7 and pH 6–11 immobilized pH gradients for firstdimension isoelectric focusing. Following second-dimension SDS-PAGE the proteins were fluorescently stained and the images collected by densitometry. 182 proteins differed by 2-fold between cases and controls. 141 showed lower expression in alcoholics, 33 higher, and 8 were new or had disappeared. To date 63 proteins have been identified using MALDI-MS and MS-MS. Western blots were performed on uncentrifuged individual samples from 76 subjects (controls, uncomplicated alcoholics and cirrhotic alcoholics). A common standard was run on every gel. After transfer, immunolabeling, and densitometry, the intensities of the unknown bands were compared to those of the standards. We focused on proteins from transcripts that showed clear differences in a series of microarray studies, classified into common sets including Regulators of G-protein Signaling and Myelin-associated proteins. The preponderantly lower level of differentially expressed proteins in alcoholics parallels the microarray mRNA analysis in the same samples. We found that mRNA and protein expression do not frequently correspond; this may help identify pathogenic processes acting at the level of transcription, translation, or post-translationally.
Resumo:
Severe long-term alcohol misuse leads to localized brain damage that is prominent in superior frontal cortex but less so in other cortical areas e.g. primary motor. Alcohol dependence is also associated with several genetic markers. GABAA receptor expression differs selectively between alcoholics and controls in a manner that conforms to the pathology, whereas glutamate receptors are much less regionally variable in these subjects. We determined whether genotype differentiated the pharmacology of glutamate-NMDA receptors and the expression GABAA receptor subunits transcripts in a locally appropriate way so as to influence the severity of alcohol-induced brain damage.
Resumo:
Chronic alcoholism leads to localized brain damage, which is prominent in superior frontal cortex but mild in motor cortex. The likelihood of developing alcohol dependence is associated with genetic markers. GABA-A receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the localized expression of glutamate N-methyl-D-aspartate (NMDA) and GABA-A receptors to influence the severity of alcohol-induced brain damage. Cerebral cortex tissue was obtained at autopsy from alcoholics without disease comorbid with alcoholics, alcoholics with cirrhosis, and matched controls. DRD2A, DRD2B, GABRB2, SLC1A2, and 5HTT genotypes did not divide alcoholic cases and controls on NMDA receptor parameters. In contrast, a specific alcohol dehydrogenase (ADHIC) genotype interacted significantly with NMDA efficacy and affinity in a region-specific manner SLC1A2 (glutamate transporter-2) genotype interacted significantly with local GABAA receptor b subunit mRNA expression, and ADHIC, DRD2B, SLC1A2, and APOE genotypes with b subunit isoform protein expression. In the latter instance, possession of the alcoholism- associated allele altered b isoform protein expression patterns toward a less-efficacious form of the GABA-A receptor in the pathologically vulnerable region. GABRB2 and GRIN2B (NMDA receptor 2B subunit} Genotypes were associated with significant regional difference in the pattern of b subunit protein isoform expression, but this was not influenced by alcoholism status. Genotype may modulate amino acid transmission locally so as to mediate neuronal vulnerability. This has implications for the effectiveness of pharmacological interventions aimed at ameliorating brain damage and, possibly, dependence.