4 resultados para HUMAN POSTMORTEM BRAIN
em CaltechTHESIS
Resumo:
The insula is a mammalian cortical structure that has been implicated in a wide range of low- and high-level functions governing one’s sensory, emotional, and cognitive experiences. One particular role of this region is considered to be processing of olfactory stimuli. The ability to detect and evaluate odors has significant effects on an organism’s eating behavior and survival and, in case of humans, on complex decision making. Despite such importance of this function, the mechanism in which olfactory information is processed in the insula has not been thoroughly studied. Moreover, due to the structure’s close spatial relationship with the neighboring claustrum, it is not entirely clear whether the connectivity and olfactory functions attributed to the insula are truly those of the insula, rather than of the claustrum. My graduate work, consisting of two studies, seeks to help fill these gaps. In the first, the structural connectivity patterns of the insula and the claustrum in a non-human primate brain is assayed using an ultra-high-quality diffusion magnetic resonance image, and the results suggest dissociation of connectivity — and hence function — between the two structures. In the second study, a functional neuroimaging experiment investigates the insular activity during odor evaluation tasks in humans, and uncovers a potential spatial organization within the anterior portion of the insula for processing different aspects of odor characteristics.
Resumo:
O-GlcNAc glycosylation of nuclear and cytosolic proteins is an essential post-translational modification implicated in many diseases, from cancer to diabetes. Importantly, many important neuronal proteins are also O-GlcNAc modified, and aberrant O-GlcNAcylation of these proteins may contribute to the pathology of neurodegenerative diseases although these mechanisms have not been well defined. Here we investigated the role of O-GlcNAc glycosylation in the brain, utilizing both chemistry and molecular biology to study O-GlcNAc transferase (OGT), the enzyme that adds the sugar modification. To evaluate the role of OGT in adult neurons, we generated a forebrain-specific conditional knockout of OGT (OGT cKO) in mice. Although indistinguishable from wild-type littermates at birth, after three weeks we observe progressive neurodegeneration in OGT cKO mice. Hallmarks of Alzheimer’s disease, including neuronal loss, neuroinflammation, behavioral deficits, hyperphosphorylated tau, and amyloid beta peptide accumulation, are observed. Furthermore, decreases in OGT protein levels were found in human AD brain tissue, suggesting that altered O-GlcNAcylation likely contributes to neurodegenerative diseases in humans. This model is one of a few mouse models that recapitulate AD phenotypes without mutating and overexpressing human tau, amyloid precursor protein, or presenilin, highlighting the essential role of OGT in neurodegenerative pathways.
Given the importance of OGT in the brain, we further investigated the regulation of the OGT enzyme by phosphorylation. We found that phosphorylation of OGT near its C-terminus reduces its activity in cancer cells, and have developed phosphorylation-specific antibodies to aid mechanistic studies. Furthermore, mutation of this phosphorylation site on OGT, followed by overexpression in neurons was shown to enhance neurite outgrowth, demonstrating a functional consequence for this site. Thus phosphorylation of OGT inhibits its activity and enhances neurite outgrowth, and current studies aim to characterize the signaling pathway that regulates OGT phosphorylation in neurons.
Resumo:
The dissertation is concerned with the mathematical study of various network problems. First, three real-world networks are considered: (i) the human brain network (ii) communication networks, (iii) electric power networks. Although these networks perform very different tasks, they share similar mathematical foundations. The high-level goal is to analyze and/or synthesis each of these systems from a “control and optimization” point of view. After studying these three real-world networks, two abstract network problems are also explored, which are motivated by power systems. The first one is “flow optimization over a flow network” and the second one is “nonlinear optimization over a generalized weighted graph”. The results derived in this dissertation are summarized below.
Brain Networks: Neuroimaging data reveals the coordinated activity of spatially distinct brain regions, which may be represented mathematically as a network of nodes (brain regions) and links (interdependencies). To obtain the brain connectivity network, the graphs associated with the correlation matrix and the inverse covariance matrix—describing marginal and conditional dependencies between brain regions—have been proposed in the literature. A question arises as to whether any of these graphs provides useful information about the brain connectivity. Due to the electrical properties of the brain, this problem will be investigated in the context of electrical circuits. First, we consider an electric circuit model and show that the inverse covariance matrix of the node voltages reveals the topology of the circuit. Second, we study the problem of finding the topology of the circuit based on only measurement. In this case, by assuming that the circuit is hidden inside a black box and only the nodal signals are available for measurement, the aim is to find the topology of the circuit when a limited number of samples are available. For this purpose, we deploy the graphical lasso technique to estimate a sparse inverse covariance matrix. It is shown that the graphical lasso may find most of the circuit topology if the exact covariance matrix is well-conditioned. However, it may fail to work well when this matrix is ill-conditioned. To deal with ill-conditioned matrices, we propose a small modification to the graphical lasso algorithm and demonstrate its performance. Finally, the technique developed in this work will be applied to the resting-state fMRI data of a number of healthy subjects.
Communication Networks: Congestion control techniques aim to adjust the transmission rates of competing users in the Internet in such a way that the network resources are shared efficiently. Despite the progress in the analysis and synthesis of the Internet congestion control, almost all existing fluid models of congestion control assume that every link in the path of a flow observes the original source rate. To address this issue, a more accurate model is derived in this work for the behavior of the network under an arbitrary congestion controller, which takes into account of the effect of buffering (queueing) on data flows. Using this model, it is proved that the well-known Internet congestion control algorithms may no longer be stable for the common pricing schemes, unless a sufficient condition is satisfied. It is also shown that these algorithms are guaranteed to be stable if a new pricing mechanism is used.
Electrical Power Networks: Optimal power flow (OPF) has been one of the most studied problems for power systems since its introduction by Carpentier in 1962. This problem is concerned with finding an optimal operating point of a power network minimizing the total power generation cost subject to network and physical constraints. It is well known that OPF is computationally hard to solve due to the nonlinear interrelation among the optimization variables. The objective is to identify a large class of networks over which every OPF problem can be solved in polynomial time. To this end, a convex relaxation is proposed, which solves the OPF problem exactly for every radial network and every meshed network with a sufficient number of phase shifters, provided power over-delivery is allowed. The concept of “power over-delivery” is equivalent to relaxing the power balance equations to inequality constraints.
Flow Networks: In this part of the dissertation, the minimum-cost flow problem over an arbitrary flow network is considered. In this problem, each node is associated with some possibly unknown injection, each line has two unknown flows at its ends related to each other via a nonlinear function, and all injections and flows need to satisfy certain box constraints. This problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear equality constraints. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which always finds the optimal injections. A primary application of this work is in the OPF problem. The results of this work on GNF prove that the relaxation on power balance equations (i.e., load over-delivery) is not needed in practice under a very mild angle assumption.
Generalized Weighted Graphs: Motivated by power optimizations, this part aims to find a global optimization technique for a nonlinear optimization defined over a generalized weighted graph. Every edge of this type of graph is associated with a weight set corresponding to the known parameters of the optimization (e.g., the coefficients). The motivation behind this problem is to investigate how the (hidden) structure of a given real/complex valued optimization makes the problem easy to solve, and indeed the generalized weighted graph is introduced to capture the structure of an optimization. Various sufficient conditions are derived, which relate the polynomial-time solvability of different classes of optimization problems to weak properties of the generalized weighted graph such as its topology and the sign definiteness of its weight sets. As an application, it is proved that a broad class of real and complex optimizations over power networks are polynomial-time solvable due to the passivity of transmission lines and transformers.
Resumo:
The evoked response, a signal present in the electro-encephalogram when specific sense modalities are stimulated with brief sensory inputs, has not yet revealed as much about brain function as it apparently promised when first recorded in the late 1940's. One of the problems has been to record the responses at a large number of points on the surface of the head; thus in order to achieve greater spatial resolution than previously attained, a 50-channel recording system was designed to monitor experiments with human visually evoked responses.
Conventional voltage versus time plots of the responses were found inadequate as a means of making qualitative studies of such a large data space. This problem was solved by creating a graphical display of the responses in the form of equipotential maps of the activity at successive instants during the complete response. In order to ascertain the necessary complexity of any models of the responses, factor analytic procedures were used to show that models characterized by only five or six independent parameters could adequately represent the variability in all recording channels.
One type of equivalent source for the responses which meets these specifications is the electrostatic dipole. Two different dipole models were studied: the dipole in a homogeneous sphere and the dipole in a sphere comprised of two spherical shells (of different conductivities) concentric with and enclosing a homogeneous sphere of a third conductivity. These models were used to determine nonlinear least squares fits of dipole parameters to a given potential distribution on the surface of a spherical approximation to the head. Numerous tests of the procedures were conducted with problems having known solutions. After these theoretical studies demonstrated the applicability of the technique, the models were used to determine inverse solutions for the evoked response potentials at various times throughout the responses. It was found that reliable estimates of the location and strength of cortical activity were obtained, and that the two models differed only slightly in their inverse solutions. These techniques enabled information flow in the brain, as indicated by locations and strengths of active sites, to be followed throughout the evoked response.