23 resultados para Gelfand-Dickey formalism
em University of Queensland eSpace - Australia
Resumo:
This is the first in a series of three articles which aimed to derive the matrix elements of the U(2n) generators in a multishell spin-orbit basis. This is a basis appropriate to many-electron systems which have a natural partitioning of the orbital space and where also spin-dependent terms are included in the Hamiltonian. The method is based on a new spin-dependent unitary group approach to the many-electron correlation problem due to Gould and Paldus [M. D. Gould and J. Paldus, J. Chem. Phys. 92, 7394, (1990)]. In this approach, the matrix elements of the U(2n) generators in the U(n) x U(2)-adapted electronic Gelfand basis are determined by the matrix elements of a single Ll(n) adjoint tensor operator called the del-operator, denoted by Delta(j)(i) (1 less than or equal to i, j less than or equal to n). Delta or del is a polynomial of degree two in the U(n) matrix E = [E-j(i)]. The approach of Gould and Paldus is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. Hence, to generalize this approach, we need to obtain formulas for the complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The nonzero shift coefficients are uniquely determined and may he evaluated by the methods of Gould et al. [see the above reference]. In this article, we define zero-shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis which are appropriate to the many-electron problem. By definition, these are proportional to the corresponding two-shell del-operator matrix elements, and it is shown that the Racah factorization lemma applies. Formulas for these coefficients are then obtained by application of the Racah factorization lemma. The zero-shift adjoint reduced Wigner coefficients required for this procedure are evaluated first. All these coefficients are needed later for the multishell case, which leads directly to the two-shell del-operator matrix elements. Finally, we discuss an application to charge and spin densities in a two-shell molecular system. (C) 1998 John Wiley & Sons.
Resumo:
This is the second in a series of articles whose ultimate goal is the evaluation of the matrix elements (MEs) of the U(2n) generators in a multishell spin-orbit basis. This extends the existing unitary group approach to spin-dependent configuration interaction (CI) and many-body perturbation theory calculations on molecules to systems where there is a natural partitioning of the electronic orbital space. As a necessary preliminary to obtaining the U(2n) generator MEs in a multishell spin-orbit basis, we must obtain a complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The zero-shift coefficients were obtained in the first article of the series. in this article, we evaluate the nonzero shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. We then demonstrate that the one-shell versions of these coefficients may be obtained by taking the Gelfand-Tsetlin limit of the two-shell formulas. These coefficients,together with the zero-shift types, then enable us to write down formulas for the U(2n) generator matrix elements in a two-shell spin-orbit basis. Ultimately, the results of the series may be used to determine the many-electron density matrices for a partitioned system. (C) 1998 John Wiley & Sons, Inc.
Resumo:
This is the third and final article in a series directed toward the evaluation of the U(2n) generator matrix elements (MEs) in a multishell spin/orbit basis. Such a basis is required for many-electron systems possessing a partitioned orbital space and where spin-dependence is important. The approach taken is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. A complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis (which is appropriate to the many-electron problem) were obtained in the first and second articles of this series. Ln the first article we defined zero-shift coupling coefficients. These are proportional to the corresponding two-shell del-operator matrix elements. See P. J. Burton and and M. D. Gould, J. Chem. Phys., 104, 5112 (1996), for a discussion of the del-operator and its properties. Ln the second article of the series, the nonzero shift coupling coefficients were derived. Having obtained all the necessary coefficients, we now apply the formalism developed above to obtain the U(2n) generator MEs in a multishell spin-orbit basis. The methods used are based on the work of Gould et al. (see the above reference). (C) 1998 John Wiley & Sons, Inc.
Resumo:
The graded-fermion algebra and quasispin formalism are introduced and applied to obtain the gl(m\n)down arrow osp(m\n) branching rules for the two- column tensor irreducible representations of gl(m\n), for the case m less than or equal to n(n > 2). In the case m < n, all such irreducible representations of gl(m\n) are shown to be completely reducible as representations of osp(m\n). This is also shown to be true for the case m=n, except for the spin-singlet representations, which contain an indecomposable representation of osp(m\n) with composition length 3. These branching rules are given in fully explicit form. (C) 1999 American Institute of Physics. [S0022-2488(99)04410-2].
Resumo:
Operator quantum error correction is a recently developed theory that provides a generalized and unified framework for active error correction and passive error avoiding schemes. In this Letter, we describe these codes using the stabilizer formalism. This is achieved by adding a gauge group to stabilizer codes that defines an equivalence class between encoded states. Gauge transformations leave the encoded information unchanged; their effect is absorbed by virtual gauge qubits that do not carry useful information. We illustrate the construction by identifying a gauge symmetry in Shor's 9-qubit code that allows us to remove 3 of its 8 stabilizer generators, leading to a simpler decoding procedure and a wider class of logical operations without affecting its essential properties. This opens the path to possible improvements of the error threshold of fault-tolerant quantum computing.
Resumo:
The Bunge-Wand-Weber (BWW) representation model defines ontological constructs for information systems. According to these constructs the completeness and efficiency of a modeling technique can be defined. Ontology plays an essential role in e-commerce. Using or updating an existing ontology and providing tools to solve any semantic conflicts become essential steps before putting a system online. We use conceptual graphs (CGs) to implement ontologies. This paper evaluates CG capabilities using the BWW representation model. It finds out that CGs are ontologically complete according to Wand and Weber definition. Also it finds out that CGs have construct overload and construct redundancy which can undermine the ontological clarity of CGs. This leads us to build a meta-model to avoid some ontological-unclarity problems. We use some of the BWW constructs to build the meta-model. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper addresses the problem of ensuring compliance of business processes, implemented within and across organisational boundaries, with the constraints stated in related business contracts. In order to deal with the complexity of this problem we propose two solutions that allow for a systematic and increasingly automated support for addressing two specific compliance issues. One solution provides a set of guidelines for progressively transforming contract conditions into business processes that are consistent with contract conditions thus avoiding violation of the rules in contract. Another solution compares rules in business contracts and rules in business processes to check for possible inconsistencies. Both approaches rely on a computer interpretable representation of contract conditions that embodies contract semantics. This semantics is described in terms of a logic based formalism allowing for the description of obligations, prohibitions, permissions and violations conditions in contracts. This semantics was based on an analysis of typical building blocks of many commercial, financial and government contracts. The study proved that our contract formalism provides a good foundation for describing key types of conditions in contracts, and has also given several insights into valuable transformation techniques and formalisms needed to establish better alignment between these two, traditionally separate areas of research and endeavour. The study also revealed a number of new areas of research, some of which we intend to address in near future.
Resumo:
The one-dimensional Hubbard model is integrable in the sense that it has an infinite family of conserved currents. We explicitly construct a ladder operator which can be used to iteratively generate all of the conserved current operators. This construction is different from that used for Lorentz invariant systems such as the Heisenberg model. The Hubbard model is not Lorentz invariant, due to the separation of spin and charge excitations. The ladder operator is obtained by a very general formalism which is applicable to any model that can be derived from a solution of the Yang-Baxter equation.
Resumo:
Using Reshetikhin's construction for multiparametric quantum algebras we obtain the associated multiparametric quantum spin chains. We show that under certain restrictions these models can be mapped to quantum spin chains with twisted boundary conditions, We illustrate how this general formalism applier; to construct multiparametric versions of the supersymmetric t-J and Li models.
Resumo:
A general graded reflection equation algebra is proposed and the corresponding boundary quantum inverse scattering method is formulated. The formalism is applicable to all boundary lattice systems where an invertible R-matrix exists. As an application, the integrable open-boundary conditions for the q-deformed supersymmetric U model of strongly correlated electrons are investigated. The diagonal boundary K-matrices are found and a class of integrable boundary terms are determined. The boundary system is solved by means of the coordinate space Bethe ansatz technique and the Bethe ansatz equations are derived. As a sideline, it is shown that all R-matrices associated with a quantum affine superalgebra enjoy the crossing-unitarity property. (C) 1998 Elsevier Science B.V.
Resumo:
This note considers the value of surface response equations which can be used to calculate critical values for a range of unit root and cointegration tests popular in applied economic research.
Resumo:
This paper summarizes the processes involved in designing a mathematical model of a growing pasture plant, Stylosanthes scabra Vog. cv. Fitzroy. The model is based on the mathematical formalism of Lindenmayer systems and yields realistic computer-generated images of progressive plant geometry through time. The processes involved in attaining growth data, retrieving useful growth rules, and constructing a virtual plant model are outlined. Progressive output morphological data proved useful for predicting total leaf area and allowed for easier quantification of plant canopy size in terms of biomass and total leaf area.
Resumo:
We show that quantum feedback control can be used as a quantum-error-correction process for errors induced by a weak continuous measurement. In particular, when the error model is restricted to one, perfectly measured, error channel per physical qubit, quantum feedback can act to perfectly protect a stabilizer codespace. Using the stabilizer formalism we derive an explicit scheme, involving feedback and an additional constant Hamiltonian, to protect an (n-1)-qubit logical state encoded in n physical qubits. This works for both Poisson (jump) and white-noise (diffusion) measurement processes. Universal quantum computation is also possible in this scheme. As an example, we show that detected-spontaneous emission error correction with a driving Hamiltonian can greatly reduce the amount of redundancy required to protect a state from that which has been previously postulated [e.g., Alber , Phys. Rev. Lett. 86, 4402 (2001)].
Resumo:
Recent advances in computer technology have made it possible to create virtual plants by simulating the details of structural development of individual plants. Software has been developed that processes plant models expressed in a special purpose mini-language based on the Lindenmayer system formalism. These models can be extended from their architectural basis to capture plant physiology by integrating them with crop models, which estimate biomass production as a consequence of environmental inputs. Through this process, virtual plants will gain the ability to react to broad environmental conditions, while crop models will gain a visualisation component. This integration requires the resolution of the fundamentally different time scales underlying the approaches. Architectural models are usually based on physiological time; each time step encompasses the same amount of development in the plant, without regard to the passage of real time. In contrast, physiological models are based in real time; the amount of development in a time step is dependent on environmental conditions during the period. This paper provides a background on the plant modelling language, then describes how widely-used concepts of thermal time can be implemented to resolve these time scale differences. The process is illustrated using a case study. (C) 1997 Elsevier Science Ltd.
Resumo:
This paper offers a defense of backwards in time causation models in quantum mechanics. Particular attention is given to Cramer's transactional account, which is shown to have the threefold virtue of solving the Bell problem, explaining the complex conjugate aspect of the quantum mechanical formalism, and explaining various quantum mysteries such as Schrodinger's cat. The question is therefore asked, why has this model not received more attention from physicists and philosophers? One objection given by physicists in assessing Cramer's theory was that it is not testable. This paper seeks to answer this concern by utilizing an argument that backwards causation models entail a fork theory of causal direction. From the backwards causation model together with the fork theory one can deduce empirical predictions. Finally, the objection that this strategy is questionable because of its appeal to philosophy is deflected.