Quantum error correction for continuously detected errors
Data(s) |
01/01/2003
|
---|---|
Resumo |
We show that quantum feedback control can be used as a quantum-error-correction process for errors induced by a weak continuous measurement. In particular, when the error model is restricted to one, perfectly measured, error channel per physical qubit, quantum feedback can act to perfectly protect a stabilizer codespace. Using the stabilizer formalism we derive an explicit scheme, involving feedback and an additional constant Hamiltonian, to protect an (n-1)-qubit logical state encoded in n physical qubits. This works for both Poisson (jump) and white-noise (diffusion) measurement processes. Universal quantum computation is also possible in this scheme. As an example, we show that detected-spontaneous emission error correction with a driving Hamiltonian can greatly reduce the amount of redundancy required to protect a state from that which has been previously postulated [e.g., Alber , Phys. Rev. Lett. 86, 4402 (2001)]. |
Identificador | |
Idioma(s) |
eng |
Publicador |
American Physical Society |
Palavras-Chave | #Optics #Physics, Atomic, Molecular & Chemical #Feedback-control #Codes #Systems #State #Computation #Dots #240000 Physical Sciences #240201 Theoretical Physics |
Tipo |
Journal Article |