Integrable open-boundary conditions for the q-deformed supersymmetric U model of strongly correlated electrons
| Data(s) |
01/01/1998
|
|---|---|
| Resumo |
A general graded reflection equation algebra is proposed and the corresponding boundary quantum inverse scattering method is formulated. The formalism is applicable to all boundary lattice systems where an invertible R-matrix exists. As an application, the integrable open-boundary conditions for the q-deformed supersymmetric U model of strongly correlated electrons are investigated. The diagonal boundary K-matrices are found and a class of integrable boundary terms are determined. The boundary system is solved by means of the coordinate space Bethe ansatz technique and the Bethe ansatz equations are derived. As a sideline, it is shown that all R-matrices associated with a quantum affine superalgebra enjoy the crossing-unitarity property. (C) 1998 Elsevier Science B.V. |
| Identificador | |
| Idioma(s) |
eng |
| Palavras-Chave | #Physics, Particles & Fields #Algebraic Bethe-ansatz #Exactly Solvable Model #Open Spin Chains #Quantum Supersymmetry #Superconductivity #Matrices #Systems #Vertex |
| Tipo |
Journal Article |