37 resultados para GLYCOSYL-ENZYME INTERMEDIATE
em University of Queensland eSpace - Australia
Resumo:
Acetohydroxy acid synthases (AHAS) are thiamin diphosphate- (ThDP-) and FAD-dependent enzymes that catalyze the first common step of branched-chain amino acid biosynthesis in plants, bacteria, and fungi. Although the flavin cofactor is not chemically involved in the physiological reaction of AHAS, it has been shown to be essential for the structural integrity and activity of the enzyme. Here, we report that the enzyme-bound FAD in AHAS is reduced in the course of catalysis in a side reaction. The reduction of the enzyme-bound flavin during turnover of different substrates under aerobic and anaerobic conditions was characterized by stopped-flow kinetics using the intrinsic FAD absorbance. Reduction of enzyme-bound FAD proceeds with a net rate constant of k' = 0.2 s(-1) in the presence of oxygen and approximately 1 s(-1) under anaerobic conditions. No transient flavin radicals are detectable during the reduction process while time-resolved absorbance spectra are recorded. Reconstitution of the binary enzyme-FAD complex with the chemically synthesized intermediate 2-(hydroxyethyl)-ThDP also results in a reduction of the flavin. These data provide evidence for the first time that the key catalytic intermediate 2-(hydroxyethyl)ThDP in the carbanionic/enamine form is not only subject to covalent addition of 2-keto acids and an oxygenase side reaction but also transfers electrons to the adjacent FAD in an intramolecular redox reaction yielding 2-acetyl-ThDP and reduced FAD. The detection of the electron transfer supports the idea of a common ancestor of acetohydroxy acid synthase and pyruvate oxidase, a homologous ThDP- and FAD-dependent enzyme that, in contrast to AHASs, catalyzes a reaction that relies on intercofactor electron transfer.
Resumo:
Acetohydroxyacid synthase (AHAS) and acetolactate synthase (ALS) are thiamine diphosphate (ThDP)-dependent enzymes that catalyze the decarboxylation of pyruvate to give a cofactor-bound hydroxyethyl group, which is transferred to a second molecule of pyruvate to give 2-acetolactate. AHAS is found in plants, fungi, and bacteria, is involved in the biosynthesis of the branched-chain amino acids, and contains non-catalytic FAD. ALS is found only in some bacteria, is a catabolic enzyme required for the butanediol fermentation, and does not contain FAD. Here we report the 2.3-Angstrom crystal structure of Klebsiella pneumoniae ALS. The overall structure is similar to AHAS except for a groove that accommodates FAD in AHAS, which is filled with amino acid side chains in ALS. The ThDP cofactor has an unusual conformation that is unprecedented among the 26 known three-dimensional structures of nine ThDP-dependent enzymes, including AHAS. This conformation suggests a novel mechanism for ALS. A second structure, at 2.0 Angstrom, is described in which the enzyme is trapped halfway through the catalytic cycle so that it contains the hydroxyethyl intermediate bound to ThDP. The cofactor has a tricyclic structure that has not been observed previously in any ThDP-dependent enzyme, although similar structures are well known for free thiamine. This structure is consistent with our proposed mechanism and probably results from an intramolecular proton transfer within a tricyclic carbanion that is the true reaction intermediate. Modeling of the second molecule of pyruvate into the active site of the enzyme with the bound intermediate is consistent with the stereochemistry and specificity of ALS.
Resumo:
Multiple sclerosis (MS) is a complex neurological disease that affects the central nervous system (CNS) resulting in debilitating neuropathology. Pathogenesis is primarily defined by CNS inflammation and demyelination of nerve axons. Methionine synthase reductase (MTRR) is an enzyme that catalyzes the remethylation of homocysteine (Hcy) to methionine via cobalamin and folate dependant reactions. Cobalamin acts as an intermediate methyl carrier between methylenetetrahydrofolate reductase (MTHFR) and Hcy. MTRR plays a critical role in maintaining cobalamin in an active form and is consequently an important determinant of total plasma Hcy (pHcy) concentrations. Elevated intracellular pHcy levels have been suggested to play a role in CNS dysfunction, neurodegenerative, and cerebrovascular diseases. Our investigation entailed the genotyping of a cohort of 140 cases and matched controls for MTRR and MTHFR, by restriction length polymorphism (RFLP) techniques. Two polymorphisms: MTRR A66G and MTHFR A1298C were investigated in an Australian age and gender matched case-control study. No significant allelic frequency difference was observed between cases and controls at the α = 0.05 level (MTRR χ^2 = 0.005, P = 0.95, MTHFR χ^2 = 1.15, P = 0.28). Our preliminary findings suggest no association between the MTRR A66G and MTHFR A1298C polymorphisms and MS.
Resumo:
Rate expression for enzyme poisoning which are consistent with a Michaelis-Menten main reaction are used to analyze the performance of a fixed bed reactor containing immobilized enzyme. When enzyme deactivation results from the irreversible bonding of a product molecule to an existing substrate-enzyme complex, it is shown that minimum enzyme activity can occur in the interior of the bed, well away from the ends. This suggests that bed sectioning techniques may enable direct evaluation of fundamental poisoning mechanisms.
Resumo:
The process of enzyme immobilization under the diffusion-controlled regime (i.e., fast attachment of enzyme compared to its diffusion) is modeled and theoretically solved in this article. Simple and compact solutions for the penetration depth of immobilized enzyme and the bulk enzyme concentration versus time are presented. Furthermore, the conditions for the validity of our solutions are also given in this article so that researchers can discover when the theoretical solutions can be applied to their systems.
Resumo:
Despite its toxicity, sulfite plays a key role in oxidative sulfur metabolism and there are even some microorganisms which can use it as sole electron source. Sulfite is the main intermediate in the oxidation of sulfur compounds to sulfate, the major product of most dissimilatory sulfur-oxidizing prokaryotes. Two pathways of sulfite oxidation are known: (1) direct oxidation to sulfate catalyzed by a sulfite: acceptor oxidoreductase, which is thought to be a molybdenum-containing enzyme; (2) indirect oxidation under the involvement of the enzymes adenylylsulfate (APS) reductase and ATP sulfurylase and/or adenylylsulfate phosphate adenylyltransferase with APS as an intermediate. The latter pathway allows substrate phosphorylation and occurs in the bacterial cytoplasm. Direct oxidation appears to have a wider distribution; however, a redundancy of pathways has been described for diverse photo- or chemotrophic, sulfite-oxidizing prokaryotes. In many pro- and also eukaryotes sulfite is formed as a degradative product from molecules containing sulfur as a heteroatom. In these organisms detoxification of sulfite is generally achieved by direct oxidation to sulfate. (C) 2001 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
A group of transposons, named maT, with characteristics intermediate between mariner and Tc1 transposons, is described. Two defective genomic copies of MdmaT from the housefly Musca domestica, with 85% identity, were found flanking and imbedded in the MdalphaE7 esterase gene involved in organophosphate insecticide resistance. Two cDNA clones, with 99% identity to each other and 72%-89% identity to the genomic copies were also obtained, but both represented truncated versions of the putative open reading frame. A third incomplete genomic copy of MdmaT was also identified upstream of the putative M. domestica period gene. The MdmaT sequences showed high identity to the transposable element Bmmar1 from the silk-worm moth, Bombyx mori, and to previously unidentified sequences in the genome of Caenorhabditis elegans. A total of 16 copies of full-length maT sequences were identified in the C elegans genome, representing three variants of the transposon, with 34%-100% identity amongst them. Twelve of the copies, named CemaT1, were virtually identical, with eight of them encoding a putative full length, intact transposase. Secondary structure predictions and phylogenetic analyses confirm that maT elements belong to the mariner-Tc1 superfamily of transposons, but their intermediate sequence and predicted structural characteristics suggest that they belong to a unique clade, distinct from either mariner-like or Tc1-like elements.
Resumo:
Novel cyclopropyl containing fatty acids are good substrates for P450(BM3) catalysed hydroxylation and analysis of their oxidation products indicates the presence of a radical intermediate (maximum rebound rate 2.6x10(10) s(-1)) and the absence of any cationic intermediate.
Resumo:
The genetic mechanisms responsible for the formation of adrenocortical adenomas which autonomously produce aldosterone are largely unknown, The adrenal renin-angiotensin system has been implicated in the pathophysiology of these tumours, Angiotensin-converting enzyme (ACE) catalyses the generation of angiotensin II, and the insertion/deletion (I/D) polymorphism of the ACE gene regulates up to 50% of plasma and cellular ACE variability in humans. We therefore examined the genotypic and allelic frequency distributions of the ACE gene I/D polymorphism in 55 patients with aldosterone-producing adenoma, APA, (angiotensin-unresponsive APA n = 28, angiotensin-responsive APA n = 27), and 80 control subjects with no family history of hypertension, We also compared the ACE gene I/D polymorphism allelic pattern in matched tumour and peripheral blood DNA in the 55 patients with APA, The frequency of the D allele was 0.518 and 0.512 and the I allele was 0.482 and 0.488 in the APA and control subjects respectively, Genotypic and allelic frequency analysis found no significant differences between the groups, Examination of the matched tumour and peripheral blood DNA samples revealed the loss of the insertion allele in four of the 25 patients who were heterozygous for the ACE I/D genotype. The I/D polymorphism of the ACE gene does not appear to contribute to the biochemical and phenotypic characteristics of APA, however, the deletion of the insertion allele of the ACE gene I/D polymorphism in 16% of aldosterone-producing adenomas may represent the loss of a tumour suppressor gene/s or other genes on chromosome 17q which may contribute to tumorigenesis in APA.