No Association Between MTHFR A1298C and MTRR A66G Polymorphisms, and MS in an Australian Cohort


Autoria(s): Szvetko, A. L.; Fowdar, J.; Nelson, J.; Colson, N.; Tajouri, L.; Csurhes, P. A.; Pender, M. P.; Griffiths, L. R.
Data(s)

01/01/2007

Resumo

Multiple sclerosis (MS) is a complex neurological disease that affects the central nervous system (CNS) resulting in debilitating neuropathology. Pathogenesis is primarily defined by CNS inflammation and demyelination of nerve axons. Methionine synthase reductase (MTRR) is an enzyme that catalyzes the remethylation of homocysteine (Hcy) to methionine via cobalamin and folate dependant reactions. Cobalamin acts as an intermediate methyl carrier between methylenetetrahydrofolate reductase (MTHFR) and Hcy. MTRR plays a critical role in maintaining cobalamin in an active form and is consequently an important determinant of total plasma Hcy (pHcy) concentrations. Elevated intracellular pHcy levels have been suggested to play a role in CNS dysfunction, neurodegenerative, and cerebrovascular diseases. Our investigation entailed the genotyping of a cohort of 140 cases and matched controls for MTRR and MTHFR, by restriction length polymorphism (RFLP) techniques. Two polymorphisms: MTRR A66G and MTHFR A1298C were investigated in an Australian age and gender matched case-control study. No significant allelic frequency difference was observed between cases and controls at the α = 0.05 level (MTRR χ^2 = 0.005, P = 0.95, MTHFR χ^2 = 1.15, P = 0.28). Our preliminary findings suggest no association between the MTRR A66G and MTHFR A1298C polymorphisms and MS.

Identificador

http://espace.library.uq.edu.au/view/UQ:12723/mpp_jns_252_07-49.pdf

http://espace.library.uq.edu.au/view/UQ:12723

Idioma(s)

eng

Publicador

Elsevier

Palavras-Chave #Clinical Neurology #Neurosciences #Multiple Sclerosis #Gene Association #Mthfr #Mtrr #Homocysteine #Methionine Synthase Reductase #Plasma Homocysteine Levels #Multiple-sclerosis #Methylenetetrahydrofolate Reductase #Dna-damage #Deficiency #Risk #Hyperhomocysteinemia #Excitotoxicity #Schizophrenia #Australia/epidemiology #Case-control Studies #Chi-square Distribution #Cohort Studies #Female #Ferredoxin-nadp Reductase/*genetics #Gene Frequency #Genotype #Homocysteine/blood #Humans #Male #Methylenetetrahydrofolate Reductase (nadph2)/*genetics #Multiple Sclerosis/blood/epidemiology/*genetics #*polymorphism, Genetic #320702 Central Nervous System #321013 Neurology and Neuromuscular Diseases #C1 #730104 Nervous system and disorders
Tipo

Journal Article