57 resultados para Excitatory Amino-acid
em University of Queensland eSpace - Australia
Resumo:
Cone snail venom is a rich source of bioactives, in particular small disulfide rich peptides that disrupt synaptic transmission. Here, we report the discovery of conomap-Vt (Conp-Vt), an unusual linear tetradecapeptide isolated from Conus vitulinus venom. The sequence displays no homology to known conopeptides, but displays significant homology to peptides of the MATP (myoactive tetradecapeptide) family, which are important endogenous neuromodulators in molluscs, annelids and insects. Conp-Vt showed potent excitatory activity in several snail isolated tissue preparations. Similar to ACh, repeated doses of Conp-Vt were tachyphylactic. Since nicotinic and muscarinic antagonists failed to block its effect and Conp-Vt desensitised tissue remained responsive to ACh, it appears that Conp-Vt contractions were non-cholinergic in origin. Finally, biochemical studies revealed that Conp-Vt is the first member of the MATP family with a D-amino acid. Interestingly, the isomerization of L-Phe to D-Phe enhanced biological activity, suggesting that this post-translational modified conopeptide may have evolved for prey capture. (c) 2006 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
Indirect evidence indicates that morphine-3-glucuronide (M3G) may contribute significantly to the neuro-excitatory side effects (myoclonus and allodynia) of large-dose systemic morphine. To gain insight into the mechanism underlying M3G' s excitatory behaviors, We used fluo-3 fluorescence digital imaging techniques to assess the acute effects of M3G (5-500 muM) on the cytosolic calcium concentration ([Ca2+](CYT)) in cultured embryonic hippocampal neurones. Acute (3 min) exposure of neurones to M3G evoked [Ca2+](CYT) transients that were typically either (a) transient oscillatory responses characterized by a rapid increase in [Ca2+](CYT) oscillation amplitude that was sustained for at least similar to30 s or (b) a sustained increase in [Ca2+](CYT) that slowly recovered to baseline. Naloxone-pretreatment decreased the proportion of M3G-responsive neurones by 10%-25%, implicating a predominantly non-opioidergic mechanism. Although the naloxone-insensitive M3G-induced increases in [Ca2+](CYT) were completely blocked by N-methyl-D-aspartic acid (NMDA) antagonists and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (alphaamino-3-hydroxy-5-methyl-4-isoxazolepropiordc acid/ kainate antagonist), CNQX did not block the large increase in [Ca2+](CYT) evoked by NMDA (as expected), confirming that N13G indirectly activates the NMDA receptor. Additionally, tetrodotoxin (Na+ channel blocker), baclofen (gamma-aminobutyric acid, agonist), MVIIC (P/Q-type calcium channel blocker), and nifedipine (L-type calcium channel blocker) all abolished M3G-induced increases in [Ca2+](CYT), suggesting that M3G may produce its neuro-excitatory effects by modulating neurotransmitter release. However, additional characterization is required.
Resumo:
The indicator amino acid oxidation (IAAO) method allows the determination of amino acid requirements under conditions of low growth rate as found in pre-laying broiler breeder pullets. Cobb 500 breeder pullets (20 wk old; 2290 +/- 280 g, n = 4) were adapted (6 d) to a pelleted, purified control diet containing all nutrients at greater than or equal to 110% of NRC recommendations. After recovery from surgery for implantation of a jugular catheter, each bird was fed, in random order, test diets containing one of nine levels of lysine (0.48, 0.96, 1.92, 2.88, 3.84, 4.80, 7.68, 9.60 and 14.40 g/kg of diet). Indicator oxidation was determined during 4-h primed (74 kBq/kg body), constant infusions (44 kBq (.) h(-1) (.) kg body(-1)) of L-[1-C-14]phenylalanine. Using the breakpoint of a one-slope broken-line model, the lysine requirement was determined to be 4.88 +/- 0.96 g/kg of diet or 366 +/- 72 mg (.) hen(-1) (.) d(-1) with an upper 95% Cl of 6.40 g/kg of diet or 480 mg (.) hen(-1) (.) d(-1). IAAO allows determination of individual bird amino acid requirements for specific ages and types of birds over short periods of time and enables more accurate broiler breeder pullet diet formulation.
Resumo:
The aim of the present study was to compare the protein-free diet, guanidinated casein (GuC) and enzyme hydrolysed casein (EHC) methods for the quantification of endogenous amino acid (AA) flow in the avian ileum. Growing broiler chickens (5 weeks old) were used. All three assay diets were based on dextrose, and in the GuC and EHC diets GuC or EHC were the sole source of N. Endogenous AA flows determined with the use of protein-free diet were considerably lower (P < 0.05) than those determined by the GuC and EHC methods. The, total endogenous AA flows determined by the GuC and EHC methods were almost 3-fold greater (P < 0.05) than those determined by the protein-free diet. The endogenous AA values obtained from GuC and EHC methods were similar (P >0.05), except for the flow of arginine, which was lower (P < 0.05) in the EHC method. Glutamic acid, aspartic acid, threonine and glycine were the predominant endogenous AA present in digesta from the distal ileum. The contents of methionine, histidine and cystine were lower compared with other AA. The method of determination had no effect on the AA composition of endogenous protein, except for threonine, glutamic acid, lysine, arginine and cystine. The concentrations of threonine and arginine were lower (P < 0.05) and that of lysine was higher (P < 0.05) with the EHC method compared with the other two methods. The concentration of glutamic acid was greater (P < 0.05) and that of cystine was lower (P < 0.05) in the EHC and GuC methods compared with the protein-free diet method. The results showed that the ileal endogenous flows of N and AA are markedly enhanced by the presence of protein and peptides, above those determined following feeding of a protein-free diet. It is concluded that the use of EHC and GuC methods enables the measurement of ileal endogenous losses in chickens under normal physiological conditions.
Resumo:
Sulfadoxine is predominantly used in combination with pyrimethamine, commonly known as Fansidar, for the treatment of Plasmodium falciparum. This combination is usually less effective against Plasmodium vivax, probably due to the innate refractoriness of parasites to the sulfadoxine component. To investigate this mechanism of resistance by P. vivax to sulfadoxine, we cloned and sequenced the P. vivax dhps (pvdhps) gene. The protein sequence was determined, and three-dimensional homology models of dihydropteroate synthase (DHPS) from P. vivax as well as P. falciparum were created. The docking of sulfadoxine to the two DHPS models allowed us to compare contact residues in the putative sulfadoxine-binding site in both species. The predicted sulfadoxine-binding sites between the species differ by one residue, V585 in P. vivax, equivalent to A613 in P. falciparum. V585 in P. vivax is predicted by energy minimization to cause a reduction in binding of sulfadoxine to DHPS in P. vivax compared to P. falciparum. Sequencing dhps genes from a limited set of geographically different P. vivax isolates revealed that V585 was present in all of the samples, suggesting that V585 may be responsible for innate resistance of P. vivax to sulfadoxine. Additionally, amino acid mutations were observed in some P. vivax isolates in positions known to cause resistance in P. falciparum, suggesting that, as in P. falciparum, these mutations are responsible for acquired increases in resistance of P. vivax to sulfadoxine.
Resumo:
Background: Protein tertiary structure can be partly characterized via each amino acid's contact number measuring how residues are spatially arranged. The contact number of a residue in a folded protein is a measure of its exposure to the local environment, and is defined as the number of C-beta atoms in other residues within a sphere around the C-beta atom of the residue of interest. Contact number is partly conserved between protein folds and thus is useful for protein fold and structure prediction. In turn, each residue's contact number can be partially predicted from primary amino acid sequence, assisting tertiary fold analysis from sequence data. In this study, we provide a more accurate contact number prediction method from protein primary sequence. Results: We predict contact number from protein sequence using a novel support vector regression algorithm. Using protein local sequences with multiple sequence alignments (PSI-BLAST profiles), we demonstrate a correlation coefficient between predicted and observed contact numbers of 0.70, which outperforms previously achieved accuracies. Including additional information about sequence weight and amino acid composition further improves prediction accuracies significantly with the correlation coefficient reaching 0.73. If residues are classified as being either contacted or non-contacted, the prediction accuracies are all greater than 77%, regardless of the choice of classification thresholds. Conclusion: The successful application of support vector regression to the prediction of protein contact number reported here, together with previous applications of this approach to the prediction of protein accessible surface area and B-factor profile, suggests that a support vector regression approach may be very useful for determining the structure-function relation between primary sequence and higher order consecutive protein structural and functional properties.
Resumo:
The recent discovery that the natriuretic peptide OvCNPb (Ornithorhynchus venom C-type natriuretic peptide B) from platypus (Ornithorynchus anatinus) venom contains a D-amino acid residue suggested that other D-amino-acid-containing peptides might be present in the venom. In the present study, we show that DLP-2 (defensin-like peptide-2), a 42-amino-acid residue polypeptide in the platypus venom, also contains a D-amino acid residue, D-methionine, at position 2, while DLP-4, which has an identical amino acid sequence, has all amino acids in the L-form. These findings were supported further by the detection of isomerase activity in the platypus gland venom extract that converts DLP-4 into DLP-2. In the light of this new information, the tertiary structure of DLP-2 was recalculated using a new structural template with D-Met(2). The structure of DLP-4 was also determined in order to evaluate the effect of a D-amino acid at position 2 on the structure and possibly to explain the large retention time difference observed for the two molecules in reverse-phase HPLC. The solution structures of the DLP-2 and DLP-4 are very similar to each other and to the earlier reported structure of DLP-2, which assumed that all amino acids were in the L-form. Our results suggest that the incorporation of the D-amino acid at position 2 has minimal effect on the overall fold in solution.
Resumo:
Combinatorial chemistry has become an invaluable tool in medicinal chemistry for the identification of new drug leads. For example, libraries of predetermined sequences and head-to-tail cyclized peptides are routinely synthesized in our laboratory using the IRORI approach. Such libraries are used as molecular toolkits that enable the development of pharmacophores that define activity and specificity at receptor targets. These libraries can be quite large and difficult to handle, due to physical and chemical constraints imposed by their size. Therefore, smaller sub-libraries are often targeted for synthesis. The number of coupling reactions required can be greatly reduced if the peptides having common amino acids are grouped into the same sub-library (batching). This paper describes a schedule optimizer to minimize the number of coupling reactions by rotating and aligning sequences while simultaneously batching. The gradient descent method thereby reduces the number of coupling reactions required for synthesizing cyclic peptide libraries. We show that the algorithm results in a 75% reduction in the number of coupling reactions for a typical cyclic peptide library.
Resumo:
Extension of the conjugated pi-system of many all-protein chromophores with an acylimine bond is the basis for their red-shifted optical properties. The presence of this post-translational modification is evident in crystal structures of these proteins. Harsh denaturation of proteins containing an acylimine bond results in partial polypeptide cleavage. For the red fluorescent protein DsRed, the extent of cleavage is quantitative. However, this is not the case for the blue non-fluorescent chromoprotein Rtms5, even though all chromophores in tetrameric Rtms5 contain an acylimine bond. We have identified two positions around the chromophore of Rtms5 where substitutions can promote or suppress the extent of cleavage on harsh denaturation. We propose a model in which cleavage of Rtms5 is facilitated by a trans to cis isomerisation of the chromophore. (c) 2006 Elsevier Inc. All rights reserved.