36 resultados para Combinatorial optimisation
em University of Queensland eSpace - Australia
Resumo:
We sought to improve the feasibility of strain rate imaging (SRI) during dobutamine stress echocardiography (DSE) in 56 subjects at low risk of coronary disease. The impact of several SRI changes during acquisition were studied, including: (1) changing from fundamental to harmonic imaging; (2) parallel beam-forming; (3) alteration of spatial resolution and (4) narrow sector acquisition. We assessed SR signal quality, a quantitative measure of signal noise and measurements of SRI. Of 1462 segments evaluated, 6% were uninterpretable at rest and 8% at peak stress. Signal quality was optimised by increasing temporal (p = 0.01) and spatial resolution (p<0.0001 vs. baseline imaging) at rest and peak. Increasing spatial resolution also minimised signal noise (p<0.0001). Inter-observer variability of time to peak SR and peak SR were less with high temporal and spatial resolution. SRI quality can be improved with harmonic imaging and higher temporal resolution but optimisation of spatial resolution is critical. (C) 2004 World Federation for Ultrasound in Medicine Biology.
Resumo:
A major problem in de novo design of enzyme inhibitors is the unpredictability of the induced fit, with the shape of both ligand and enzyme changing cooperatively and unpredictably in response to subtle structural changes within a ligand. We have investigated the possibility of dampening the induced fit by using a constrained template as a replacement for adjoining segments of a ligand. The template preorganizes the ligand structure, thereby organizing the local enzyme environment. To test this approach, we used templates consisting of constrained cyclic tripeptides, formed through side chain to main chain linkages, as structural mimics of the protease-bound extended beta-strand conformation of three adjoining amino acid residues at the N- or C-terminal sides of the scissile bond of substrates. The macrocyclic templates were derivatized to a range of 30 structurally diverse molecules via focused combinatorial variation of nonpeptidic appendages incorporating a hydroxyethylamine transition-state isostere. Most compounds in the library were potent inhibitors of the test protease (HIV-1 protease). Comparison of crystal structures for five protease-inhibitor complexes containing an N-terminal macrocycle and three protease-inhibitor complexes containing a C-terminal macrocycle establishes that the macrocycles fix their surrounding enzyme environment, thereby permitting independent variation of acyclic inhibitor components with only local disturbances to the protease. In this way, the location in the protease of various acyclic fragments on either side of the macrocyclic template can be accurately predicted. This type of templating strategy minimizes the problem of induced fit, reducing unpredictable cooperative effects in one inhibitor region caused by changes to adjacent enzyme-inhibitor interactions. This idea might be exploited in template-based approaches to inhibitors of other proteases, where a beta-strand mimetic is also required for recognition, and also other protein-binding ligands where different templates may be more appropriate.
Resumo:
Promiscuous human leukocyte antigen (HLA) binding peptides are ideal targets for vaccine development. Existing computational models for prediction of promiscuous peptides used hidden Markov models and artificial neural networks as prediction algorithms. We report a system based on support vector machines that outperforms previously published methods. Preliminary testing showed that it can predict peptides binding to HLA-A2 and -A3 super-type molecules with excellent accuracy, even for molecules where no binding data are currently available.
Resumo:
Poly-beta-hydroxyalkanoate (PHA) is a polymer commonly used in carbon and energy storage for many different bacterial cells. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), store PHA anaerobically through metabolism of carbon substrates such as acetate and propionate. Although poly-beta-hydroxybutyrate (PHB)and poly-beta-hydroxyvalerate (PHV) are commonly quantified using a previously developed gas chromatography (GC) method, poly-beta-hydroxy-2-methyl valerate (PH2MV) is seldom quantified despite the fact that it has been shown to be a key PHA fraction produced when PAOs or GAOs metabolise propionate. This paper presents two GC-based methods modified for extraction and quantification of PHB, PHV and PH2MV from enhanced biological phosphorus removal (EBPR) systems. For the extraction Of PHB and PHV from acetate fed PAO and GAO cultures, a 3% sulfuric acid concentration and a 2-20 h digestion time is recommended, while a 10% sulfuric acid solution digested for 20 h is recommended for PHV and PH2MV analysis from propionate fed EBPR systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The cyclotides are a recently discovered family of miniproteins that contain a head-to-tail cyclized backbone and a knotted arrangement of disulfide bonds. They are approximately 30 amino acids in size and are present in high abundance in plants from the Violaceae, Rubiaceae, and Cucurbitaceae families, with individual plants containing a suite of up to 100 cyclotides. They have a diverse range of biological activities, including uterotonic, anti-HIV, antitumor, and antimicrobial activities, although their natural function is likely that of defending their host plants from pathogens and pests. This review focuses on the structural aspects of cyclotides, which may be thought of as a natural combinatorial peptide template in which a wide range of amino acids is displayed on a compact molecular core made up of the cyclic cystine knot structural motif. Cyclotides are exceptionally stable and are resistant to denaturation via thermal, chemical, or enzymatic treatments. The struclural features that contribute to their remarkable stability are described ill this review. (c) 2006 Wiley Periodicals, Inc.