15 resultados para 0101 Pure Mathematics
em University of Queensland eSpace - Australia
Resumo:
For a parameter, we consider the modified relaxed energy of the liquid crystal system. Each minimizer of the modified relaxed energy is a weak solution to the liquid crystal equilibrium system. We prove the partial regularity of minimizers of the modified relaxed energy. We also prove the existence of infinitely many weak solutions for the special boundary value x.
Resumo:
We discuss the partial regularity of minimizers of energy functionals such as (1)/(p)integral(Omega)[sigma(u)dA(p) + (1)/(2)delu(2p)]dx, where u is a map from a domain Omega is an element of R-n into the m-dimensional unit sphere of Rm+1 and A is a differential one-form in Omega.
Resumo:
Let {a(1), a(2), ..., a(n)} be a set of n distinct real numbers and let alpha(1), alpha(2), ..., alpha(n) an be a permutation of the numbers. We construct the permutation to maximise L-f = Sigma(i=1)(n) f(\alpha(i+1) - alpha(i)\), for any increasing concave function f, where we denote alpha(n+1) equivalent to alpha(1). The optimal permutation depends on the particular numbers {a(1), a(2), ..., a(n)} and the function f, contrary to a postulate by Chao and Liang (European J. Combin. 13 (1992) 325). (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The concept of a monotone family of functions, which need not be countable, and the solution of an equilibrium problem associated with the family are introduced. A fixed-point theorem is applied to prove the existence of solutions to the problem.
Resumo:
For n >= 5 and k >= 4, we show that any minimizing biharmonic map from Omega subset of R-n to S-k is smooth off a closed set whose Hausdorff dimension is at most n - 5. When n = 5 and k = 4, for a parameter lambda is an element of [0, 1] we introduce lambda-relaxed energy H-lambda of the Hessian energy for maps in W-2,W-2 (Omega; S-4) so that each minimizer u(lambda) of H-lambda is also a biharmonic map. We also establish the existence and partial regularity of a minimizer of H-lambda for lambda is an element of [0, 1).
Resumo:
We consider the semilinear Schrodinger equation -Delta(A)u + V(x)u = Q(x)vertical bar u vertical bar(2* -2) u. Assuming that V changes sign, we establish the existence of a solution u not equal 0 in the Sobolev space H-A,V(1) + (R-N). The solution is obtained by a min-max type argument based on a topological linking. We also establish certain regularity properties of solutions for a rather general class of equations involving the operator -Delta(A).
Resumo:
We consider the solvability of the Neumann problem for the equation -Delta u + lambda u = 0, partial derivative u/partial derivative v = Q(x)vertical bar u vertical bar(q-2)u on partial derivative Omega, where Q is a positive and continuous coefficient on partial derivative Omega, lambda is a parameter and q = 2(N - 1)/(N - 2) is a critical Sobolev exponent for the trace embedding of H-1(Omega) into L-q(partial derivative Omega). We investigate the joint effect of the mean curvature of partial derivative Omega and the shape of the graph of Q on the existence of solutions. As a by product we establish a sharp Sobolev inequality for the trace embedding. In Section 6 we establish the existence of solutions when a parameter lambda interferes with the spectrum of -Delta with the Neumann boundary conditions. We apply a min-max principle based on the topological linking.
Resumo:
In this paper we consider the exterior Neumann problem involving a critical Sobolev exponent. We establish the existence of two solutions having a prescribed limit at infinity.
Resumo:
In this paper, it is shown that for any pair of integers (m, n) with 4 ≤ m ≤ n, if there exists an m-cycle system of order n, then there exists an irreducible 2-fold m-cycle system of order n, except when (m, n) = (5,5). A similar result has already been established for the case of 3-cycles. © 2005 Wiley Periodicals, Inc.