115 resultados para procedural level generation
Resumo:
In a previous study (Jones and Smith, 1999) we established that much the same core pattern of national identity characterizes many developed countries. Using the national identity module from the 1995 International Social Survey Programme, we identified two dimensions of national identity: an ascriptive dimension resembling the concept of ethnic identity described in the historical and theoretical literature, and a voluntarist dimension closer to the notion of civic identity. Some writers view these dimensions in terms of a historical sequence but we find that both constructs coexist in the minds of individual respondents in the nations we examine (we exclude Bulgaria and the Philippines from the present but not the earlier analysis). The dataset used for the multilevel analyses reported here consists of 28 589 respondents in the remaining 21 countries included in the national identity database for the 1995 round of surveys. The macrosociological literature on national identity does not offer well-defined predictions about what precise patterns of national identification we might expect to find among the masses of the developed countries. There are, however, recurring themes from which one can construct plausible hypotheses about how countries might differ according to their level of development, broadly conceived. Thus, we hypothesize that forces such as post-industrialism and globalization tend to favour the more open voluntaristic form of national identity over the more restrictive ascribed form. We develop different multi-level models in order to evaluate specific hypotheses pertaining to such issues, by simultaneously relating individual and societal characteristics to the relative strength of individual commitment to these different types of national identity.
Resumo:
The phase estimation algorithm is so named because it allows an estimation of the eigenvalues associated with an operator. However, it has been proposed that the algorithm can also be used to generate eigenstates. Here we extend this proposal for small quantum systems, identifying the conditions under which the phase-estimation algorithm can successfully generate eigenstates. We then propose an implementation scheme based on an ion trap quantum computer. This scheme allows us to illustrate two simple examples, one in which the algorithm effectively generates eigenstates, and one in which it does not.
Resumo:
We investigate the fluorescence spectrum of a two-level atom driven by a multiple amplitude-modulated field. The driving held is modeled as a polychromatic field composed of a strong central (resonant) component and a large number of symmetrically detuned sideband fields displaced from the central component by integer multiples of a constant detuning. Spectra obtained here differ qualitatively from those observed for a single pair of modulating fields [B. Blind, P.R. Fontana, and P. Thomann, J. Phys. B 13, 2717 (1980)]. In the case of a small number of the modulating fields, a multipeaked spectrum is obtained with the spectral features located at fixed frequencies that are independent of the number of modulating fields and their Rabi frequencies. As the number of the modulating fields increases, the spectrum ultimately evolves to the well-known Mellow triplet with the sidebands shifted from the central component by an effective Rabi frequency whose magnitude depends on the initial relative phases of the components of the driving held. For equal relative phases, the effective Rabi frequency of the driving field can be reduced to zero resulting in the disappearance of fluorescence spectrum, i.e., the atom can stop interacting with the field. When the central component and the modulating fields are 180 degrees out of phase, the spectrum retains its triplet structure with the sidebands located at frequencies equal to the sum of the Rabi frequencies of the component of the driving field. Moreover, we shaw that the frequency of spontaneous emission can be controlled and switched from one frequency to another when the Rabi frequency or initial phase of the modulating fields are varied.
Resumo:
We study the effect of quantum interference on the population distribution and absorptive properties of a V-type three-level atom driven by two lasers of unequal intensities and different angular frequencies. Three coupling configurations of the lasers to the atom are analysed: (a) both lasers coupled to the same atomic transition, (b) each laser coupled to different atomic transition and (c) each laser coupled to both atomic transitions. Dressed stales for the three coupling configurations are identified, and the population distribution and absorptive properties of the weaker field are interpreted in terms of transition dipole moments and transition frequencies among these dressed states. In particular, we find that in the first two cases there is no population inversion between the bare atomic states, but the population can be trapped in a superposition of the dressed states induced by quantum interference and the stronger held. We show that the trapping of the population, which results from the cancellation of transition dipole moments, does not prevent the weaker field to be coupled to the cancelled (dark) transitions. As a result, the weaker field can be strongly amplified on transparent transitions. In the case of each laser coupled to both atomic transitions the population can be trapped in a linear superposition of the excited bare atomic states leaving the ground state unpopulated in the steady state. Moreover, we find that the absorption rate of the weaker field depends on the detuning of the strong field from the atomic resonances and the splitting between the atomic excited states. When the strong held is resonant to one of the atomic transitions a quasi-trapping effect appears in one of the dressed states. In the quasi-trapping situation all the transition dipole moments are different from zero, which allows the weaker field to be amplified on the inverted transitions. When the strong field is tuned halfway between the atomic excited states, the population is completely trapped in one of the dressed states and no amplification is found for the weaker field.
Resumo:
We study a three-level atomic system of the vee type, but driven on only one transition by a monochromatic laser. It is shown that the gain of a probe beam, recently predicted for this system by Menon and Agarwal (Menon S and Agarwal G 2000 Phys. Rev. A 61 13 807), is due to an unexpected amplification on a completely inverted, nondecaying (dark) transition. This prediction violates the well known balance condition between the population inversion and the coupling strength of the probe field to the inverted transition, which requires that the coupling strength reduces with increasing population inversion. We show that the condition may be violated only if the probe field selectively couples to just one of the atomic transitions: when it couples to both transitions, the balance condition is satisfied and the system is transparent for the probe field coupled to the dark transitions. No amplification is possible in the latter case.
Resumo:
Mice transgenic for E6/E7 oncogenes of Human Papillomavirus type 16 display life-long expression of E6 in lens and skin epithelium, and develop inflammatory skin disease late in life, which progresses to papillomata and squamous carcinoma in some mice. We asked whether endogenous expression of E6 induced a specific immunological outcome, i.e. immunity or tolerance, or whether the mice remained immunologically naive to E6. We show that prior to the onset of skin disease, E6 transgenic mice did not develop a spontaneous E6-directed antibody response, nor did they display T-cell proliferative responses to dominant T-helper epitope peptides within E6. In contrast, old mice in which skin disease had arisen, developed antibodies to E6. We also show that following immunisation with E6, specific antibody responses did not differ significantly among groups of EB-transgenic mice of different ages (and therefore of different durations and amounts of exposure to endogenous E6), and non-transgenic controls. Additionally, E6 immunisation-induced T-cell proliferative responses were similar in E6-transgenic and non-transgenic mice. These data are consistent with the interpretation that unimmunised Eb-transgenic mice that have not developed inflammatory skin disease remain immunologically naive to E6 at the B- and Th levels. There are implications for E6-mediated tumorigenesis in humans, and for the development of putative E6 therapeutic vaccines. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Quantum feedback can stabilize a two-level atom against decoherence (spontaneous emission), putting it into an arbitrary (specified) pure state. This requires perfect homodyne detection of the atomic emission, and instantaneous feedback. Inefficient detection was considered previously by two of us. Here we allow for a non-zero delay time tau in the feedback circuit. Because a two-level atom is a non-linear optical system, an analytical solution is not possible. However, quantum trajectories allow a simple numerical simulation of the resulting non-Markovian process. We find the effect of the time delay to be qualitatively similar to chat of inefficient detection. The solution of the non-Markovian quantum trajectory will not remain fixed, so that the time-averaged state will be mixed, not pure. In the case where one tries to stabilize the atom in the excited state, an approximate analytical solution to the quantum trajectory is possible. The result, that the purity (P = 2Tr[rho (2)] - 1) of the average state is given by P = 1 - 4y tau (where gamma is the spontaneous emission rate) is found to agree very well with the numerical results. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This report outlines the development of optimized particle inflow gun (PIG) parameters for producing transgenic sorghum (Sorghum bicolor (L.) Moench). Both transient and stable expression were examined when determining these parameters. The uidA reporter gene (GUS) encoding beta -glucuronidase was used in transient experiments and the green fluorescent protein (GFP) used to monitor stable expression. Initially, optimization was conducted using leaf segments, as the generation of sorghum callus in sufficiently large quantities is time-consuming. Following leaf optimization, experiments were conducted using callus, identifying a high similarity between the two tissue types (r(s) = 0.83). High levels of GUS expression were observed in both leaf and callus material when most distant from the DNA expulsion point, and using a pressure greater than 1800 kPa. A higher level of expression was also observed when the aperture of the helium inlet valve was constricted. Using the optimized conditions (pressure of 2200 kPa, distance to target tissue of 15 cm from the expulsion point, and the aperture of the helium inlet valve at one full turn), three promoters (Ubiquitin, Actin1 and CaMV 35S) were evaluated over a 72-h period using GUS as the reporter gene. A significantly higher number of GUS foci were counted with the Ubiquitin construct over this period, compared to the Actin1 and CaMV 35S constructs. Stable callus sectors (on 2 mg l(-1) bialaphos) with GFP expression were visualized for as long as 6 wk post-bombardment. Using this optimized protocol, several plants were regenerated after having been bombarded with the pAHC20 construct (containing the bar gene), with molecular evidence confirming integration.
Resumo:
We show that stochastic electrodynamics and quantum mechanics give quantitatively different predictions for the quantum nondemolition (QND) correlations in travelling wave second harmonic generation. Using phase space methods and stochastic integration, we calculate correlations in both the positive-P and truncated Wigner representations, the latter being equivalent to the semi-classical theory of stochastic electrodynamics. We show that the semiclassical results are different in the regions where the system performs best in relation to the QND criteria, and that they significantly overestimate the performance in these regions. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Unit-efficiency homodyne detection of the resonance fluorescence of a two-level atom collapses the quantum state of the atom to a stochastically moving point on the Bloch sphere. Recently, Hofmann, Mahler, and Hess [Phys. Rev. A 57, 4877 (1998)] showed that by making part of the coherent driving proportional to the homodyne photocurrent one can stabilize the state to any point on the bottom-half of the sphere. Here we reanalyze their proposal using the technique of stochastic master equations, allowing their results to be generalized in two ways. First, we show that any point on the upper- or lower-half, but not the equator, of the sphere may be stabilized. Second, we consider nonunit-efficiency detection, and quantify the effectiveness of the feedback by calculating the maximal purity obtainable in any particular direction in Bloch space.
Resumo:
Understanding the genetic architecture of quantitative traits can greatly assist the design of strategies for their manipulation in plant-breeding programs. For a number of traits, genetic variation can be the result of segregation of a few major genes and many polygenes (minor genes). The joint segregation analysis (JSA) is a maximum-likelihood approach for fitting segregation models through the simultaneous use of phenotypic information from multiple generations. Our objective in this paper was to use computer simulation to quantify the power of the JSA method for testing the mixed-inheritance model for quantitative traits when it was applied to the six basic generations: both parents (P-1 and P-2), F-1, F-2, and both backcross generations (B-1 and B-2) derived from crossing the F-1 to each parent. A total of 1968 genetic model-experiment scenarios were considered in the simulation study to quantify the power of the method. Factors that interacted to influence the power of the JSA method to correctly detect genetic models were: (1) whether there were one or two major genes in combination with polygenes, (2) the heritability of the major genes and polygenes, (3) the level of dispersion of the major genes and polygenes between the two parents, and (4) the number of individuals examined in each generation (population size). The greatest levels of power were observed for the genetic models defined with simple inheritance; e.g., the power was greater than 90% for the one major gene model, regardless of the population size and major-gene heritability. Lower levels of power were observed for the genetic models with complex inheritance (major genes and polygenes), low heritability, small population sizes and a large dispersion of favourable genes among the two parents; e.g., the power was less than 5% for the two major-gene model with a heritability value of 0.3 and population sizes of 100 individuals. The JSA methodology was then applied to a previously studied sorghum data-set to investigate the genetic control of the putative drought resistance-trait osmotic adjustment in three crosses. The previous study concluded that there were two major genes segregating for osmotic adjustment in the three crosses. Application of the JSA method resulted in a change in the proposed genetic model. The presence of the two major genes was confirmed with the addition of an unspecified number of polygenes.