71 resultados para MR imaging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

When patients undergo a magnetic resonance imaging scan, they are subject to both strong static and temporal magnetic fields. The temporal fields are designed to vary at each point in the region being imaged. This is achieved by the use of gradient coils. However, when the gradient coils are switched very rapidly, the strongly time-varying magnetic fields produced can be responsible for stimulating nerves in the peripheral regions of the body. This paper gives a somewhat novel explanation for this phenomenon. The physical mechanism suggested is supported by an illustrative theoretical calculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New designs for force-minimized compact high-field clinical MRI magnets are described. The design method is a modified simulated annealing (SA) procedure which includes Maxwell forces in the error function to be minimized. This permits an automated force reduction in the magnet designs while controlling the overall dimensions of the system. As SA optimization requires many iterations to achieve a final design, it is important that each iteration in the procedure is rapid. We have therefore developed a rapid force calculation algorithm. Novel designs for short 3- and 4-T clinical MRI systems are presented in which force reduction has been invoked. The final designs provide large homogeneous regions and reduced stray fields in remarkable short magnets. A shielded 4-T design that is approximately 30% shorter than current designs is presented. This novel magnet generates a full 50-cm diameter homogeneous region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lateral ventricular volumes based on segmented brain MR images can be significantly underestimated if partial volume effects are not considered. This is because a group of voxels in the neighborhood of lateral ventricles is often mis-classified as gray matter voxels due to partial volume effects. This group of voxels is actually a mixture of ventricular cerebro-spinal fluid and the white matter and therefore, a portion of it should be included as part of the lateral ventricular structure. In this note, we describe an automated method for the measurement of lateral ventricular volumes on segmented brain MR images. Image segmentation was carried in combination of intensity correction and thresholding. The method is featured with a procedure for addressing mis-classified voxels in the surrounding of lateral ventricles. A detailed analysis showed that lateral ventricular volumes could be underestimated by 10 to 30% depending upon the size of the lateral ventricular structure, if mis-classified voxels were not included. Validation of the method was done through comparison with the averaged manually traced volumes. Finally, the merit of the method is demonstrated in the evaluation of the rate of lateral ventricular enlargement. (C) 2001 Elsevier Science Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel current density mapping (CDM) schemes are developed for the design of new actively shielded, clinical magnetic resonance imaging (MRI) magnets. This is an extended inverse method in which the entire potential solution space for the superconductors has been considered, rather than single current density layers. The solution provides an insight into the required superconducting coil pattern for a desired magnet configuration. This information is then used as an initial set of parameters for the magnet structure, and a previously developed hybrid numerical optimization technique is used to obtain the final geometry of the magnet. The CDM scheme is applied to the design of compact symmetric, asymmetric, and open architecture 1.0-1.5 T MRI magnet systems of novel geometry and utility. A new symmetric 1.0-T system that is just I m in length with a full 50-cm diameter of the active, or sensitive, volume (DSV) is detailed, as well as an asymmetric system in which a 50-cm DSV begins just 14 cm from the end of the coil structure. Finally a 1.0-T open magnet system with a full 50-cm DSV is presented. These new designs provide clinically useful homogeneous regions and have appropriately restricted stray fields but, in some of the designs, the DSV is much closer to the end of the magnet system than in conventional designs. These new designs have the potential to reduce patient claustrophobia and improve physician access to patients undergoing scans. (C) 2002 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ellipsoidal harmonics are presented as a basis function set for the design of shim coils for magnetic resonance imaging (MRI) or spectroscopy. MR shim coils may be either superconductive or resistive. Ellipsoidal harmonics form an orthogonal set over an ellipsoid and hence are appropriate in circumstances where the imaging or spectroscopic region of a magnet more closely conforms to an ellipsoid rather than a sphere. This is often the case in practice. The Cartesian form of ellipsoidal harmonics is discussed. A method for the design of streamline coil designs is detailed and patterns for third-order ellipsoidal (Lame) shims wound on a cylindrical surface are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spaceborne/airborne synthetic aperture radar (SAR) systems provide high resolution two-dimensional terrain imagery. The paper proposes a technique for combining multiple SAR images, acquired on flight paths slightly separated in the elevation direction, to generate high resolution three-dimensional imagery. The technique could be viewed as an extension to interferometric SAR (InSAR) in that it generates topographic imagery with an additional dimension of resolution. The 3-D multi-pass SAR imaging system is typically characterised by a relatively short ambiguity length in the elevation direction. To minimise the associated ambiguities we exploit the relative phase information within the set of images to track the terrain landscape. The SAR images are then coherently combined, via a nonuniform DFT, over a narrow (in elevation) volume centred on the 'dominant' terrain ground plane. The paper includes a detailed description of the technique, background theory, including achievable resolution, and the results of an experimental study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional (3D) synthetic aperture radar (SAR) imaging via multiple-pass processing is an extension of interferometric SAR imaging. It exploits more than two flight passes to achieve a desired resolution in elevation. In this paper, a novel approach is developed to reconstruct a 3D space-borne SAR image with multiple-pass processing. It involves image registration, phase correction and elevational imaging. An image model matching is developed for multiple image registration, an eigenvector method is proposed for the phase correction and the elevational imaging is conducted using a Fourier transform or a super-resolution method for enhancement of elevational resolution. 3D SAR images are obtained by processing simulated data and real data from the first European Remote Sensing satellite (ERS-1) with the proposed approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic resonance imaging (MRI) is an easily automated, reliable technique to investigate axial mixing within rotating drums. Moist bran can be clearly differentiated from dry bran using MRI allowing a non-segregating tracer for axial mixing. For a 20-cm diameter drum, the axial dispersion coefficient in the particle bed was 0.51 cm s(-2). Axial dispersion is scale-dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic resonance imaging (MRI) magnets have very stringent constraints on the homogeneity of the static magnetic field that they generate over desired imaging regions. The magnet system also preferably generates very little stray field external to its structure, so that ease of siting and safety are assured. This work concentrates on deriving, means of rapidly computing the effect of 'cold' and 'warm' ferromagnetic material in or around the superconducting magnet system, so as to facilitate the automated design of hybrid material MR magnets. A complete scheme for the direct calculation of the spherical harmonics of the magnetic field generated by a circular ring of ferromagnetic material is derived under the conditions of arbitrary external magnetizing fields. The magnetic field produced by the superconducting coils in the system is computed using previously developed methods. The final, hybrid algorithm is fast enough for use in large-scale optimization methods. The resultant fields from a practical example of a 4 T, clinical MRI magnet containing both superconducting coils and magnetic material are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the ability of ultrasonography to estimate musactivity, we measured architectural parameters (pennation angles, fascicle lengths, and muscle thickness) of several human muscles (tibialis anterior, biceps brachii, brachialis, transversus abdominis, obliquus internus abdominis, and obliquus externus abdominis) during isometric contractions of from 0 to 100% maximal voluntary contraction (MVC). Concurrently, electromyographic (EMG) activity was measured with surface (tibialis anterior only) or fine-wire electrodes. Most architectural parameters changed markedly with contractions up to 30% MVC but changed little at higher levels of contraction. Thus, ultrasound imaging can be used to detect low levels of muscle activity but cannot discriminate between moderate and strong contractions. Ultrasound measures could reliably detect changes in EMG of as little as 4% MVC (biceps muscle thickness), 5% MVC (brachialis muscle thickness), or 9% MVC (tibialis anterior pennation angle). They were generally less sensitive to changes in abdominal muscle activity, but it was possible to reliably detect contractions of 12% MVC in transversus abdominis (muscle length) and 22% MVC in obliquus internus (muscle thickness). Obliquus externus abdominis thickness did not change consistently with muscle contraction, so ultrasound measures of thickness cannot be used to detect activity of this muscle. Ultrasound imaging can thus provide a non-invasive method of detecting isometric muscle contractions of certain individual muscles.