84 resultados para rotation structures, grain crushing
Resumo:
The magnitude of genotype-by-management (G x M) interactions for grain yield and grain protein concentration was examined in a multi-environment trial (MET) involving a diverse set of 272 advanced breeding lines from the Queensland wheat breeding program. The MET was structured as a series of management-regimes imposed at 3 sites for 2 years. The management-regimes were generated at each site-year as separate trials in which planting time, N fertiliser application rate, cropping history, and irrigation were manipulated. irrigation was used to simulate different rainfall regimes. From the combined analysis of variance, the G x M interaction variance components were found to be the largest source of G x E interaction variation for both grain yield (0.117 +/- 0.005 t(2) ha(-2); 49% of total G x E 0.238 +/- 0.028 t(2) ha(-2)) and grain protein concentration (0.445 +/- 0.020%(2); 82% of total G x E 0.546 +/- 0.057%(2)), and in both cases this source of variation was larger than the genotypic variance component (grain yield 0.068 +/- 0.014 t(2) ha(-2) and grain protein 0.203 +/- 0.026%(2)). The genotypic correlation between the traits varied considerably with management-regime, ranging from -0.98 to -0.31, with an estimate of 0.0 for one trial. Pattern analysis identified advanced breeding lines with improved grain yield and grain protein concentration relative to the cultivars Hartog, Sunco and Meteor. It is likely that a large component of the previously documented G x E interactions for grain yield of wheat in the northern grains region are in part a result of G x M interactions. The implications of the strong influence of G x M interactions for the conduct of wheat breeding METs in the northern region are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Electromyographic (EMG) studies have shown that a large number of trunk muscles are recruited during axial rotation. The functional roles of these trunk muscles in axial rotation are multiple and have not been well investigated. In addition, there is no information on the coupling torque at different exertion levels during axial rotation. The aim of the study was to investigate the functional roles of rectus abdominis. external oblique. internal oblique, latissimus dorsi, iliocostalis lumborum and multifidus during isometric right and left axial rotation at 100%, 70%, 50% and 30% maximum voluntary contractions (MVC) in a standing position. The coupling torques in sagittal and coronal planes were measured during axial rotation to examine the coupling nature of torque at different levels of exertions. Results showed that the coupled sagittal torque switches from nil to flexion at maximum exertion of axial rotation. Generally, higher EMG activities were shown at higher exertion levels for all the trunk muscles. Significant differences in activity between the right and left axial rotation exertions were demonstrated in external oblique, internal oblique, latissimus dorsi and iliocostalis lumborum while no difference was shown in rectus abdominis and multifidus. These results demonstrated the different functional roles of trunk muscles during axial rotation. This is important considering that the abdominal and back muscles not only produce torque but also maintain the spinal posture and stability during axial rotation exertions. The changing coupling torque direction in the sagittal plane when submaximal to maximal exertions were compared may indicate the complex nature of the kinetic coupling of trunk muscles. (C) 2001 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.
Scavenging of siliceous grain-boundary phase of 8-mol%-ytterbia-stabilized zirconia without additive
Resumo:
The grain-boundary conductivity (sigma (gb),) of 8-mol%-ytterbiastabilized zirconia increased markedly with heat treatment between 1000 degrees and 1300 degreesC with a slow heating rate (0.1 degreesC/min) before sintering. The extent of the sigma (gb) improvement was the same or larger than that via Al2O3 addition. The heat treatment did not affect the grain-interior conduction when sintered at 1600 degreesC, while Al2O3-derived scavenging significantly did, given the larger increment of total conductivity in the heat-treated sample. The formation of a silicon-containing phase in a discrete form was suggested as a possible route of scavenging the resistive phase from the correlation between average grain size and sigma (gb).
Resumo:
Retention of green leaf area in grain sorghum under post-anthesis drought, known as stay-green, is associated with greater biomass production, lodging resistance and yield. The stay-green phenomenon can be examined at a cell, leaf, or whole plant level. At a cell level, the retention of chloroplast proteins such as LHCP2, OEC33 and Rubisco until late in senescence has been reported in sorghum containing the KS19 source of stay-green, indicating that photosynthesis may be maintained for longer during senescence in these genotypes. At a leaf level, longevity of photosynthetic apparatus is intimately related to nitrogen (N) status. At a whole plant level, stay-green can be viewed as a consequence of the balance between N demand by the grain and N supply during grain filling. To examine some of these concepts, nine hybrids varying in the B35 and KS19 sources of stay-green were grown under a postanthesis water deficit. Genotypic variation in delayed onset and reduced rate of leaf senescence were explained by differences in specific leaf nitrogen (SLN) and N uptake during grain filling. Matching N supply from age-related senescence and N uptake during grain tilling with grain N demand found that the shortfall in N supply for grain filling was greater in the senescent than stay-green hybrids, resulting in more accelerated leaf senescence in the former. We hypothesise that increased N uptake by stay-green hybrids is a result of greater biomass accumulation during grain filling in response to increased sink demand (higher grain numbers) which, in turn, is the result of increased radiation use efficiency and transpiration efficiency due to higher SLN. Delayed leaf senescence resulting from higher SLN should, in turn, allow snore carbon and nitrogen to be allocated to the roots of stay-green hybrids during grain filling, thereby maintaining a greater capacity to extract N from the soil compared with senescent hybrids.
Resumo:
As determined by X-ray crystallography, Meldrum's acid derivatives 8–19 feature dihedral angles around the central CC double bonds between 3 and 83°. Hydrogen bonds between substituents RHN and the carbonyl groups favour near-planarity. Sterically demanding substituents favour large dihedral angles and zwitterionic structures as in formula 20. AM1 calculations of the structures are in excellent agreement with the experimental X-ray data, provided a dielectric field is incorporated (?= 40). This can be ascribed to the highly polar (zwitterionic) nature of the molecules. It is further predicted that all these molecules, including those that are stabilised in a planar form by intramolecular hydrogen bonds, undergo rapid rotation about the central CC bonds at room temperature. DFT calculations incorporating a dielectric field model (PCM) are in excellent agreement with the near-perpendicular arrangement of the alkene moiety in 19.
Resumo:
Crystal structures have been determined for free Escherichia coli hypoxanthine phosphoribosyltransferase (HPRT) (2.9 Angstrom resolution) and for the enzyme in complex with the reaction products, inosine 5'-monophosphate (IMP) and guanosine 5-monophosphate (GMP) (2.8 Angstrom resolution). Of the known 6-oxopurine phosphoribosyltransferase (PRTase) structures, E. coli HPRT is most similar in structure to that of Tritrichomonas foetus HGXPRT, with a rmsd for 150 Calpha atoms of 1.0 Angstrom. Comparison of the free and product bound structures shows that the side chain of Phe156 and the polypeptide backbone in this vicinity move to bind IMP or GMP. A nonproline cis peptide bond, also found in some other 6-oxopurine PRTases, is observed between Leu46 and Arg47 in both the free and complexed structures. For catalysis to occur, the 6-oxopurine PRTases have a requirement for divalent metal ion, Usually Mg2+ in vivo. In the free structure, a Mg2+, is coordinated to the side chains of Glu103 and Asp104. This interaction may be important for stabilization of the enzyme before catalysis. E. coli HPRT is unique among the known 6-oxopurine PRTases in that it exhibits a marked preference for hypoxanthine as substrate over both xanthine and guanine. The structures suggest that its substrate specificity is due to the modes of binding of the bases. In E. coli HPRT, the carbonyl oxygen of Asp 163 would likely form a hydrogen bond with the 2-exocyclic nitrogen of guanine (in the HPRT-guanine-PRib-PP-Mg2+ complex). However, hypoxanthine does not have a 2-exocyclic atom and the HPRT-IMP structure suggests that hypoxanthine is likely to occupy a different position in the purine-binding pocket.
Resumo:
The grain-boundary conduction of 8 mol % ytterbia-stabilized zirconia (8YbSZ) was improved markedly by precursor scavenging via the two-stage sintering process. The most significant increase in the grain-boundary conductivity was found when the sample, whose conductivity was higher than that via Al2O3-derived scavenging, was heat-treated at 1250degreesC for greater than or equal to 20 h. The formation of a stable Si-containing phase such as ZrSiO4 during the first-stage heat-treatment was suggested as one probable scavenging route from the optimal heat-treatment temperature (HTT), long duration time (>20 h) at HTT, and the stability of the formed phase up to sintering temperatures (1500degrees C). (C) 2002 The Electrochemical Society.
Resumo:
High levels of inheritable resistance to phosphine in Rhyzopertha dominica have recently, been detected in Australia and hi art effort to isolate the genes responsible For resistance we have used random amplified DNA fingerprinting (RAF) to produce a genetic linkage map of R. dominica. The map consists of 94 dominant DNA markers with art average distance between markers of 4.6 cM and defines nine linkage groups with a total recombination distance of 390.1 cM. We have identified two loci that are responsible for high-level resistance. One provides similar to50x resistance to phosphine while the other provides 12.5x resistance and in combination, the two genes act synergistically to provide a resistance level 250 x greater than that of fully susceptible beetles. The haploid genome size has been determined to be 4.76 x 10(8) bp, resulting in an average physical distance of 1.2 Mbp per map unit. No recombination has been observed between either of the two resistance loci and their adjacent DNA markers in a population of 44 fully resistant F-5 individuals, which indicates that the genes are likely to reside within 0.91 cM (1.1 Mbp) of the DNA markers.
Resumo:
C,C-Dicyanoketenimines 10a-c were generated by flash vacuum thermolysis of ketene NS-acetals 9a-c or by thermal or photochemical decomposition of alpha-azido-,beta-cyanocinnamonitrile 11. In the latter reaction, 3,3-dicyano-2-phenyl-1-azirine 12 is also formed. IR spectroscopy of the keteniminines isolated in Ar matrixes or as neat films, NMR spectroscopy of 10c, and theoretical calculations (B3LYP/6-31G*) demonstrate that these ketenimines have variable geometry, being essentially linear along the CCN-R framework in polar media (neat films and solution), but in the gas phase or Ar matrix they are bent, as is usual for ketenimines. Experiments and calculations agree that a single CN substituent as in 13 is not enough to enforce linearity, and sulfonyl groups are less effective that cyano groups in causing linearity. C,C-Bis(methylsulfonyl)ketenimines 4-5 and a C-cyano-C-(methylsulfonyl)ketenimine 15 are not linear. The compound p-O2NC6H4N=C= C(COOMe)2 previously reported in the literature is probably somewhat linearized along the CCNR moiety. A computational survey (B3LYP/6-31G*) of the inversion barrier at nitrogen indicates that electronegative C-substituents dramatically lower the barrier; this is also true of N-acyl substituents. Increasing polarity causes lower barriers. Although N-alkylbis(methylsulfonyl)ketenimines are not calculated to be linear, the barriers are so low that crystal lattice forces can induce planarity in N-methylbis(methylsulfonyl)ketenimine 3.
Resumo:
Study Design. A cross-sectional case-control study. Objectives. To examine the effect of fatigue on torque output as well as electromyographic frequency and amplitude values of trunk muscles during isometric axial rotation exertion in back pain patients and to compare the results with a matched control group. Summary of Background Data. Back pain patients exhibited different activation strategies in trunk muscles during the axial rotation exertions. Fatigue changes of abdominal and back muscles during axial rotation exertion have not been examined in patients with back pain. Methods. Twelve back pain patients and 12 matched controls performed isometric fatiguing axial rotation to both sides at 80% maximum voluntary contraction in a standing position. During the fatiguing exertion, electromyographic changes of rectus abdominis, external oblique, internal oblique, latissimus dorsi, iliocostalis lumborum, and multifidus were recorded bilaterally. The primary torque in the transverse plane and the coupling torques in sagittal and coronal planes were also measured. Results. No difference in the endurance capacity was found between back pain and control groups. At the initial period of the exertion, back pain patients demonstrated a statistical trend (P = 0.058) of greater sagittal coupling torque as well as lower activity of rectus abdominis and multifidus and higher activity in external oblique. During the fatigue process similar changes of coupling torque were demonstrated in both sagittal and coronal planes, but a smaller fatigue rate for right external oblique, increase in median frequency for latissimus dorsi, and lesser increase in activity for back muscles were found in the back pain group compared with the control group. Conclusions. Alterations in electromyographic activation and fatigue rates of abdominal and back muscles demonstrated during the fatigue process provide insights into the muscle dysfunctions in back pain and may help clinicians to devise more rational treatment strategies.
Resumo:
Design of liquid retaining structures involves many decisions to be made by the designer based on rules of thumb, heuristics, judgment, code of practice and previous experience. Various design parameters to be chosen include configuration, material, loading, etc. A novice engineer may face many difficulties in the design process. Recent developments in artificial intelligence and emerging field of knowledge-based system (KBS) have made widespread applications in different fields. However, no attempt has been made to apply this intelligent system to the design of liquid retaining structures. The objective of this study is, thus, to develop a KBS that has the ability to assist engineers in the preliminary design of liquid retaining structures. Moreover, it can provide expert advice to the user in selection of design criteria, design parameters and optimum configuration based on minimum cost. The development of a prototype KBS for the design of liquid retaining structures (LIQUID), using blackboard architecture with hybrid knowledge representation techniques including production rule system and object-oriented approach, is presented in this paper. An expert system shell, Visual Rule Studio, is employed to facilitate the development of this prototype system. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Circular disulfide-rich polypeptides were unknown a decade ago but over recent years a large family of such molecules has been discovered, which we now refer to as the cyclotides. They are typically about 30 amino acids in size, contain an N- to C-cyclised backbone and incorporate three disulfide bonds arranged in a cystine knot motif. In this motif, an embedded ring in the structure formed by two disulfide bonds and their connecting backbone segments is penetrated by the third disulfide bond. The combination of this knotted and strongly braced structure with a circular backbone renders the cyclotides impervious to enzymatic breakdown and makes them exceptionally stable. This article describes the discovery of the cyclotides in plants from the Rubiaceae and Violaceae families, their chemical synthesis, folding, structural characterisation, and biosynthetic origin. The cyclotides have a diverse range of biological applications, ranging from uterotonic action, to anti-HIV and neurotensin antagonism. Certain plants from which they are derived have a history of uses in native medicine, with activity being observed after oral ingestion of a tea made from the plants. This suggests the possibility that the cyclotides may be orally bioavailable. They therefore have a range of potential applications as a stable peptide framework.
Resumo:
A comprehensive probabilistic model for simulating microstructure formation and evolution during solidification has been developed, based on coupling a Finite Differential Method (FDM) for macroscopic modelling of heat diffusion to a modified Cellular Automaton (mCA) for microscopic modelling of nucleation, growth of microstructures and solute diffusion. The mCA model is similar to Nastac's model for handling solute redistribution in the liquid and solid phases, curvature and growth anisotropy, but differs in the treatment of nucleation and growth. The aim is to improve understanding of the relationship between the solidification conditions and microstructure formation and evolution. A numerical algorithm used for FDM and mCA was developed. At each coarse scale, temperatures at FDM nodes were calculated while nucleation-growth simulation was done at a finer scale, with the temperature at the cell locations being interpolated from those at the coarser volumes. This model takes account of thermal, curvature and solute diffusion effects. Therefore, it can not only simulate microstructures of alloys both on the scale of grain size (macroscopic level) and the dendrite tip length (mesoscopic level), but also investigate nucleation mechanisms and growth kinetics of alloys solidified with various solute concentrations and solidification morphologies. The calculated results are compared with values of grain sizes and solidification morphologies of microstructures obtained from a set of casting experiments of Al-Si alloys in graphite crucibles.
Resumo:
Head-to-tail cyclic peptides have been reported to bind to multiple, unrelated classes of receptor with high affinity. They may therefore be considered to be privileged structures. This review outlines the strategies by which both macrocyclic cyclic peptides and cyclic dipeptides or diketopiperazines have been synthesised in combinatorial libraries. It also briefly outlines some of the biological applications of these molecules, thereby justifying their inclusion as privileged structures.