60 resultados para Analysis of Algorithms and Problem Complexity
Resumo:
Current initiatives in the field of Business Process Management (BPM) strive for the development of a BPM standard notation by pushing the Business Process Modeling Notation (BPMN). However, such a proposed standard notation needs to be carefully examined. Ontological analysis is an established theoretical approach to evaluating modelling techniques. This paper reports on the outcomes of an ontological analysis of BPMN and explores identified issues by reporting on interviews conducted with BPMN users in Australia. Complementing this analysis we consolidate our findings with previous ontological analyses of process modelling notations to deliver a comprehensive assessment of BPMN.
Resumo:
Although the current level of organic production in industrialised countries amounts to little more than 1-2 percent, it is recognised that one of the major issues shaping agricultural output over the next several decades will be the demand for organic produce (Dixon et al. 2001). In Australia, the issues of healthy food and environmental concern contribute to increasing demand and market volumes for organic produce. However, in Indonesia, using more economical inputs for organic production is a supply-side factor driving organic production. For individual growers and processors, conversion from conventional to organic agriculture is often a challenging step, entailing a thorough revision of established practices and heightened market insecurity. This paper examines the potential for a systems approach to the analysis of the conversion process, to yield insights for household and community decisions. A framework for applying farming systems research to investigate the benefits of organic production in both Australia and Indonesia is discussed. The framework incorporates scope for farmer participation, crucial to the understanding of farming systems; analysis of production; and relationships to resources, technologies, markets, services, policies and institutions in their local cultural context. A systems approach offers the potential to internalise the external effects that may be constraining decisions to convert to organic production, and for the design of decision-making tools to assist households and the community. Systems models can guide policy design and serve as a mechanism for predicting the impact of changes to the policy and market environments. The increasing emphasis of farming systems research on community and environment in recent years is in keeping with the proposed application to organic production, processing and marketing issues. The approach will also facilitate the analysis of critical aspects of the Australian production, marketing and policy environment, and the investigation of these same features in an Indonesian context.
Resumo:
The BR algorithm is a novel and efficient method to find all eigenvalues of upper Hessenberg matrices and has never been applied to eigenanalysis for power system small signal stability. This paper analyzes differences between the BR and the QR algorithms with performance comparison in terms of CPU time based on stopping criteria and storage requirement. The BR algorithm utilizes accelerating strategies to improve its performance when computing eigenvalues of narrowly banded, nearly tridiagonal upper Hessenberg matrices. These strategies significantly reduce the computation time at a reasonable level of precision. Compared with the QR algorithm, the BR algorithm requires fewer iteration steps and less storage space without depriving of appropriate precision in solving eigenvalue problems of large-scale power systems. Numerical examples demonstrate the efficiency of the BR algorithm in pursuing eigenanalysis tasks of 39-, 68-, 115-, 300-, and 600-bus systems. Experiment results suggest that the BR algorithm is a more efficient algorithm for large-scale power system small signal stability eigenanalysis.
Resumo:
Heat transfer and entropy generation analysis of the thermally developing forced convection in a porous-saturated duct of rectangular cross-section, with walls maintained at a constant and uniform heat flux, is investigated based on the Brinkman flow model. The classical Galerkin method is used to obtain the fully developed velocity distribution. To solve the thermal energy equation, with the effects of viscous dissipation being included, the Extended Weighted Residuals Method (EWRM) is applied. The local (three dimensional) temperature field is solved by utilizing the Green’s function solution based on the EWRM where symbolic algebra is being used for convenience in presentation. Following the computation of the temperature field, expressions are presented for the local Nusselt number and the bulk temperature as a function of the dimensionless longitudinal coordinate, the aspect ratio, the Darcy number, the viscosity ratio, and the Brinkman number. With the velocity and temperature field being determined, the Second Law (of Thermodynamics) aspect of the problem is also investigated. Approximate closed form solutions are also presented for two limiting cases of MDa values. It is observed that decreasing the aspect ratio and MDa values increases the entropy generation rate.
Resumo:
This study describes the pedagogical impact of real-world experimental projects undertaken as part of an advanced undergraduate Fluid Mechanics subject at an Australian university. The projects have been organised to complement traditional lectures and introduce students to the challenges of professional design, physical modelling, data collection and analysis. The physical model studies combine experimental, analytical and numerical work in order to develop students’ abilities to tackle real-world problems. A first study illustrates the differences between ideal and real fluid flow force predictions based upon model tests of buildings in a large size wind tunnel used for research and professional testing. A second study introduces the complexity arising from unsteady non-uniform wave loading on a sheltered pile. The teaching initiative is supported by feedback from undergraduate students. The pedagogy of the course and projects is discussed with reference to experiential, project-based and collaborative learning. The practical work complements traditional lectures and tutorials, and provides opportunities which cannot be learnt in the classroom, real or virtual. Student feedback demonstrates a strong interest for the project phases of the course. This was associated with greater motivation for the course, leading in turn to lower failure rates. In terms of learning outcomes, the primary aim is to enable students to deliver a professional report as the final product, where physical model data are compared to ideal-fluid flow calculations and real-fluid flow analyses. Thus the students are exposed to a professional design approach involving a high level of expertise in fluid mechanics, with sufficient academic guidance to achieve carefully defined learning goals, while retaining sufficient flexibility for students to construct there own learning goals. The overall pedagogy is a blend of problem-based and project-based learning, which reflects academic research and professional practice. The assessment is a mix of peer-assessed oral presentations and written reports that aims to maximise student reflection and development. Student feedback indicated a strong motivation for courses that include a well-designed project component.
Resumo:
The common approach of bioelectrical impedance analysis to estimate body water uses a wrist-to-ankle methodology which, although not indicated by theory, has the advantage of ease of application particularly for clinical studies involving patients with debilitating diseases. A number of authors have suggested the use of a segmental protocol in which the impedances of the trunk and limbs are measured separately to provide a methodology more in keeping with basic theory. The segmental protocol hits not, however, been generally adopted, partly because of the increased complexity involved in its application, and partly because studies comparing the two methodologies have not clearly demonstrated a significant improvement from the segmental methodology. We have conducted a small pilot study involving ten subjects to investigate the efficacy of the two methodologies in a group of normal subjects. The study did not require the independent measure of body water, by for example isotope dilution, as the subjects were maintained in a state of constant hydration with only the distribution between limbs and trunk changing as a result of change in posture. The results demonstrate a significant difference between the two methodologies in predicting the expected constancy of body water in this study, with the segmental methodology indicating a mean percentage change in extracellular water of -2.2%; which was not significantly different from the expected null result, whereas the wrist-to-ankle methodology indicated a mean percentage change in extracellular water of -6.6%. This is significantly different from the null result, and from the value obtained from the segmental methodology (p = 0.006). Similar results were obtained using estimates of total body water from the two methodologies. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
We use theoretical and numerical methods to investigate the general pore-fluid flow patterns near geological lenses in hydrodynamic and hydrothermal systems respectively. Analytical solutions have been rigorously derived for the pore-fluid velocity, stream function and excess pore-fluid pressure near a circular lens in a hydrodynamic system. These analytical solutions provide not only a better understanding of the physics behind the problem, but also a valuable benchmark solution for validating any numerical method. Since a geological lens is surrounded by a medium of large extent in nature and the finite element method is efficient at modelling only media of finite size, the determination of the size of the computational domain of a finite element model, which is often overlooked by numerical analysts, is very important in order to ensure both the efficiency of the method and the accuracy of the numerical solution obtained. To highlight this issue, we use the derived analytical solutions to deduce a rigorous mathematical formula for designing the computational domain size of a finite element model. The proposed mathematical formula has indicated that, no matter how fine the mesh or how high the order of elements, the desired accuracy of a finite element solution for pore-fluid flow near a geological lens cannot be achieved unless the size of the finite element model is determined appropriately. Once the finite element computational model has been appropriately designed and validated in a hydrodynamic system, it is used to examine general pore-fluid flow patterns near geological lenses in hydrothermal systems. Some interesting conclusions on the behaviour of geological lenses in hydrodynamic and hydrothermal systems have been reached through the analytical and numerical analyses carried out in this paper.
Resumo:
We use the finite element method to solve the coupled problem between convective pore-fluid flow, heat transfer and mineralization in layered hydrothermal systems with upward throughflow. In particular, we present the improved rock alteration index (IRAI) concept for predicting the most probable precipitation and dissolution regions of gold (Au) minerals in the systems. To validate the numerical method used in the computation, analytical solutions to a benchmark problem have been derived. After the numerical method is validated, it is used to investigate the pattern of pore-fluid Aom, the distribution of temperature and the mineralization pattern of gold minerals in a layered hydrothermal system with upward throughflow. The related numerical results have demonstrated that the present concept of IRAI is useful and applicable for predicting the most probable precipitation and dissolution regions of gold (Au) minerals in hydrothermal systems. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Introduction The objective of this study was to analyse the accommodation needs of people with intellectual disability over the age of 18 years in Toowoomba and contiguous shires. In 2004, a group of carers established Toowoomba Intellectual Disability Support Association (TIDSA) to address the issue of the lack of supported accommodation for people with intellectual disability over the age of 18 and the concerns of ageing carers. The Centre for Rural and Remote Area Health (CRRAH) was engaged by TIDSA to ascertain this need and undertook a research project funded by the Queensland Gambling Community Benefit Fund. While data specifically relating to people with intellectual disability and their carers are difficult to obtain, the Australian Bureau of Statistics report that carers of people with a disability are more likely to be female and at least 65 years of age. Projections by the National Centre for Social and Economic Modelling (NATSEM) show that disability rates are increasing and carer rates are decreasing. Thus the problem of appropriate support to the increasing number of ageing carers and those who they care for will be a major challenge to policy makers and is an issue of immediate concern. In general, what was once the norm of accommodating people with intellectual disability in large institutions is now changing to accommodating into community-based residences (Annison, 2000; Young, Ashman, Sigafoos, & Grevell, 2001). However, in Toowoomba and contiguous shires, TIDSA have noted that the availability of suitable accommodation for people with intellectual disability over the age of 18 years is declining with no new options available in an environment of increasing demand. Most effort seemed to be directed towards crisis provision. Method This study employed two phases of data gathering, the first being the distribution of a questionnaire through local service providers and upon individual request to the carers of people with intellectual disability over the age of 18. The questionnaire comprised of Likert-type items intended to measure various aspects of current and future accommodation issues. Most questions were followed with space for free-response comments to provide the opportunity for carers to further clarify and expand on their responses. The second phase comprised semi-structured interviews conducted with ten carers and ten people with intellectual disability who had participated in the Phase One questionnaire. Interviews were transcribed verbatim and subjected to content analysis where major themes were explored. Results Age and gender Carer participants in this study totalled 150. The mean age of these carers was 61.5 years and ranged from 40 – 91 years. Females comprised 78% of the sample (mean age = 61.49; range from 40-91) and 22% were male (mean age = 61.7 range from 43-81). The mean age of people with intellectual disability in our study was 37.2 years ranging from 18 – 79 years with 40% female (mean age = 39.5; range from 19-79) and 60% male (mean age = 35.6; range from 18-59). The average age of carers caring for a person over the age of 18 who is living at home is 61 years. The average age of the carer who cares for a person who is living away from home is 62 years. The overall age range of both these groups of carers is between 40 and 81 years. The oldest group of carers (mean age = 70 years) were those where the person with intellectual disability lives away from home in a large residential facility. Almost one quarter of people with an intellectual disability who currently live at home is cared for by one primary carer and this is almost exclusively a parent.
Resumo:
Event-specific scales commonly have greater power than generalized scales in prediction of specific disorders and in testing mediator models for predicting such disorders. Therefore, in a preliminary study, a 6-item Alcohol Helplessness Scale was constructed and found to be reliable for a sample of 98 problem drinkers. Hierarchical multiple regression and its derivative path analysis were used to test whether helplessness and self-efficacy moderate or mediate the link between alcohol dependence and depression, A test of a moderation model was not supported, whereas a test of a mediation model was supported. Helplessness and self-efficacy both significantly and independently mediated between alcohol dependence and depression. Nevertheless, a significant direct effect of alcohol dependence on depression also remained, (C) 2001 John Wiley & Sons, Inc.
Resumo:
Neurological disease or dysfunction in newborn infants is often first manifested by seizures. Prolonged seizures can result in impaired neurodevelopment or even death. In adults, the clinical signs of seizures are well defined and easily recognized. In newborns, however, the clinical signs are subtle and may be absent or easily missed without constant close observation. This article describes the use of adaptive signal processing techniques for removing artifacts from newborn electroencephalogram (EEG) signals. Three adaptive algorithms have been designed in the context of EEG signals. This preprocessing is necessary before attempting a fine time-frequency analysis of EEG rhythmical activities, such as electrical seizures, corrupted by high amplitude signals. After an overview of newborn EEG signals, the authors describe the data acquisition set-up. They then introduce the basic physiological concepts related to normal and abnormal newborn EEGs and discuss the three adaptive algorithms for artifact removal. They also present time-frequency representations (TFRs) of seizure signals and discuss the estimation and modeling of the instantaneous frequency related to the main ridge of the TFR.
Resumo:
Observational data collected in the Lake Tekapo hydro catchment of the Southern Alps in New Zealand are used to analyse the wind and temperature fields in the alpine lake basin during summertime fair weather conditions. Measurements from surface stations, pilot balloon and tethersonde soundings, Doppler sodar and an instrumented light aircraft provide evidence of multi-scale interacting wind systems, ranging from microscale slope winds to mesoscale coast-to-basin flows. Thermal forcing of the winds occurred due to differential heating as a consequence of orography and heterogeneous surface features, which is quantified by heat budget and pressure field analysis. The daytime vertical temperature structure was characterised by distinct layering. Features of particular interest are the formation of thermal internal boundary layers due to the lake-land discontinuity and the development of elevated mixed layers. The latter were generated by advective heating from the basin and valley sidewalls by slope winds and by a superimposed valley wind blowing from the basin over Lake Tekapo and up the tributary Godley Valley. Daytime heating in the basin and its tributary valleys caused the development of a strong horizontal temperature gradient between the basin atmosphere and that over the surrounding landscape, and hence the development of a mesoscale heat low over the basin. After noon, air from outside the basin started flowing over mountain saddles into the basin causing cooling in the lowest layers, whereas at ridge top height the horizontal air temperature gradient between inside and outside the basin continued to increase. In the early evening, a more massive intrusion of cold air caused rapid cooling and a transition to a rather uniform slightly stable stratification up to about 2000 m agl. The onset time of this rapid cooling varied about 1-2 h between observation sites and was probably triggered by the decay of up-slope winds inside the basin, which previously countered the intrusion of air over the surrounding ridges. The intrusion of air from outside the basin continued until about mid-night, when a northerly mountain wind from the Godley Valley became dominant. The results illustrate the extreme complexity that can be caused by the operation of thermal forcing processes at a wide range of spatial scales.