A comparison of segmental and wrist-to-ankle methodologies of bioimpedance analysis
Data(s) |
01/01/1998
|
---|---|
Resumo |
The common approach of bioelectrical impedance analysis to estimate body water uses a wrist-to-ankle methodology which, although not indicated by theory, has the advantage of ease of application particularly for clinical studies involving patients with debilitating diseases. A number of authors have suggested the use of a segmental protocol in which the impedances of the trunk and limbs are measured separately to provide a methodology more in keeping with basic theory. The segmental protocol hits not, however, been generally adopted, partly because of the increased complexity involved in its application, and partly because studies comparing the two methodologies have not clearly demonstrated a significant improvement from the segmental methodology. We have conducted a small pilot study involving ten subjects to investigate the efficacy of the two methodologies in a group of normal subjects. The study did not require the independent measure of body water, by for example isotope dilution, as the subjects were maintained in a state of constant hydration with only the distribution between limbs and trunk changing as a result of change in posture. The results demonstrate a significant difference between the two methodologies in predicting the expected constancy of body water in this study, with the segmental methodology indicating a mean percentage change in extracellular water of -2.2%; which was not significantly different from the expected null result, whereas the wrist-to-ankle methodology indicated a mean percentage change in extracellular water of -6.6%. This is significantly different from the null result, and from the value obtained from the segmental methodology (p = 0.006). Similar results were obtained using estimates of total body water from the two methodologies. (C) 1998 Elsevier Science Ltd. All rights reserved. |
Identificador | |
Idioma(s) |
eng |
Publicador |
Elsevier Sci Ltd |
Palavras-Chave | #Chemistry, Inorganic & Nuclear #Nuclear Science & Technology #Radiology, Nuclear Medicine & Medical Imaging #Bioelectrical-impedance Analysis #Body |
Tipo |
Journal Article |