57 resultados para uantitative MRI
Resumo:
We have recently introduced the concept of whole-body asymmetric MRI systems [1]. In this theoretical study, we investigate the PNS characteristics of whole-body asymmetric gradient systems as compared to conventional symmetric systems. Recent experimental evidence [2] supports the hypothesis of transverse gradients being the largest contributor of PNS due to induced electric currents. Asymmetric head gradient coils have demonstrated benefits in the past [3]. The numerical results are based on an anatomically-accurate 2mm-human voxel-phantom NORMAN [4]. The results of this study can facilitate the optimization of whole-body asymmetric gradients in terms of patient comfort/safety (less PNS), while prospering the use of asymmetric MRI systems for in-vivo medical interventions.
Resumo:
A new passive shim design method is presented which is based on a magnetization mapping approach. Well defined regions with similar magnetization values define the optimal number of passive shims, their shape and position. The new design method is applied in a shimming process without prior-axial shim localization; this reduces the possibility of introducing new errors. The new shim design methodology reduces the number of iterations and the quantity of material required to shim a magnet. Only a few iterations (1-5) are required to shim a whole body horizontal bore magnet with a manufacturing error tolerance larger than 0.1 mm and smaller than 0.5 mm. One numerical example is presented
Resumo:
A novel algorithm for performing registration of dynamic contrast-enhanced (DCE) MRI data of the breast is presented. It is based on an algorithm known as iterated dynamic programming originally devised to solve the stereo matching problem. Using artificially distorted DCE-MRI breast images it is shown that the proposed algorithm is able to correct for movement and distortions over a larger range than is likely to occur during routine clinical examination. In addition, using a clinical DCE-MRI data set with an expertly labeled suspicious region, it is shown that the proposed algorithm significantly reduces the variability of the enhancement curves at the pixel level yielding more pronounced uptake and washout phases.