50 resultados para Cyclopropane amino acid


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Indirect evidence indicates that morphine-3-glucuronide (M3G) may contribute significantly to the neuro-excitatory side effects (myoclonus and allodynia) of large-dose systemic morphine. To gain insight into the mechanism underlying M3G' s excitatory behaviors, We used fluo-3 fluorescence digital imaging techniques to assess the acute effects of M3G (5-500 muM) on the cytosolic calcium concentration ([Ca2+](CYT)) in cultured embryonic hippocampal neurones. Acute (3 min) exposure of neurones to M3G evoked [Ca2+](CYT) transients that were typically either (a) transient oscillatory responses characterized by a rapid increase in [Ca2+](CYT) oscillation amplitude that was sustained for at least similar to30 s or (b) a sustained increase in [Ca2+](CYT) that slowly recovered to baseline. Naloxone-pretreatment decreased the proportion of M3G-responsive neurones by 10%-25%, implicating a predominantly non-opioidergic mechanism. Although the naloxone-insensitive M3G-induced increases in [Ca2+](CYT) were completely blocked by N-methyl-D-aspartic acid (NMDA) antagonists and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (alphaamino-3-hydroxy-5-methyl-4-isoxazolepropiordc acid/ kainate antagonist), CNQX did not block the large increase in [Ca2+](CYT) evoked by NMDA (as expected), confirming that N13G indirectly activates the NMDA receptor. Additionally, tetrodotoxin (Na+ channel blocker), baclofen (gamma-aminobutyric acid, agonist), MVIIC (P/Q-type calcium channel blocker), and nifedipine (L-type calcium channel blocker) all abolished M3G-induced increases in [Ca2+](CYT), suggesting that M3G may produce its neuro-excitatory effects by modulating neurotransmitter release. However, additional characterization is required.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acetohydroxy acid synthases (AHAS) are thiamin diphosphate- (ThDP-) and FAD-dependent enzymes that catalyze the first common step of branched-chain amino acid biosynthesis in plants, bacteria, and fungi. Although the flavin cofactor is not chemically involved in the physiological reaction of AHAS, it has been shown to be essential for the structural integrity and activity of the enzyme. Here, we report that the enzyme-bound FAD in AHAS is reduced in the course of catalysis in a side reaction. The reduction of the enzyme-bound flavin during turnover of different substrates under aerobic and anaerobic conditions was characterized by stopped-flow kinetics using the intrinsic FAD absorbance. Reduction of enzyme-bound FAD proceeds with a net rate constant of k' = 0.2 s(-1) in the presence of oxygen and approximately 1 s(-1) under anaerobic conditions. No transient flavin radicals are detectable during the reduction process while time-resolved absorbance spectra are recorded. Reconstitution of the binary enzyme-FAD complex with the chemically synthesized intermediate 2-(hydroxyethyl)-ThDP also results in a reduction of the flavin. These data provide evidence for the first time that the key catalytic intermediate 2-(hydroxyethyl)ThDP in the carbanionic/enamine form is not only subject to covalent addition of 2-keto acids and an oxygenase side reaction but also transfers electrons to the adjacent FAD in an intramolecular redox reaction yielding 2-acetyl-ThDP and reduced FAD. The detection of the electron transfer supports the idea of a common ancestor of acetohydroxy acid synthase and pyruvate oxidase, a homologous ThDP- and FAD-dependent enzyme that, in contrast to AHASs, catalyzes a reaction that relies on intercofactor electron transfer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To more precisely formulate feed and predict animal performance, it is important to base both the recommendations and feed formulations on digestible rather than total amino acid contents. Most published data on the digestibility of amino acids in feed ingredients for poultry are based on excreta digestibility. Ileal digestibility is an alternative and preferred approach to estimate amino acid availability in feed ingredients. Both methodologies are described and assessed. In addition, the differences between apparent and standardised (in which corrections are made for basal endogenous losses) digestible amino acid systems are discussed. The concept of a standardised digestibility system as a mean of overcoming the limitations of apparent digestibility estimates is proposed. In this context, different methodologies for the determination of basal endogenous amino acid losses are discussed. Although each methodology suffers from some limitations and published data on endogenous losses at the ileal level in growing poultry are limited, averaged data from repeated experiments using the 'enzymatically hydrolysed casein' method are considered as the best measure of basal losses. Standardised ileal amino acid digestibility values of 17 feed ingredients commonly used in broiler nutrition are presented including grains (barley, corn, sorghum, triticale, wheat), grain by-products (wheat middlings, rice pollard), plant protein sources (soybean meal, canola meal, corn gluten meal, cottonseed meal, lupins, peas/beans, sunflower meal), and animal by-products (feather meal, fish meal, meat and bone meal). This comprehensive set of the ileal amino acid digestibility of feed ingredients in broiler nutrition may serve as a basis for the establishment of the system in broiler feeding and for further research.