23 resultados para unsaturated fatty acids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An industrial wastewater treatment plant at Grindsted, Denmark, has suffered from bulking problems for several years caused by filamentous bacteria. Five strains were isolated from the sludge by micromanipulation, Phylogenetic analysis of the 16S rRNA gene sequences showed that the strains formed a monophyletic cluster in the Alphaproteobacteria, and they were phenotypically different from their closest relatives and from all hitherto known filamentous bacteria described (closest relative Brevundimonas vesicularis ATCC 11426(T), 89(.)8% sequence similarity). In pure culture, the cells (1(.)5-2(.)0 mu m) in filaments are Gram-negative and contain polyphosphate and polyhydroxyalkanoates. The optimum temperature for growth is 30 degrees C and the strains grow in 2 % NaCl and are oxidase- and catalase-positive. Ubiquinone 10 is the major quinone. The major fatty acid (C-18: 1 omega 7c) and smaller amounts of unsaturated fatty acids, 3-hydroxy fatty acids with a chain length of 16 and 18 carbon atoms and small amounts of 10-methyl-branched fatty acids with 18 carbon atoms (C-19: 0 10-methyl) affiliated the strains with the Methylobacterium/Xanthobacter group in the Alphaproteobacteria. The G + C content of the DNA is 42(.)9 mol% (for strain Gr1(T)). The two most dissimilar isolates by 16S rRNA gene comparison (Gr1(T) and Gr10; 97(.)7 % identical) showed 71(.)5 % DNA-DNA relatedness. Oligonucleotide probes specific for the pure cultures were designed for fluorescence in situ hybridization and demonstrated that two filamentous morphotypes were present in the Grindsted wastewater treatment plant. It is proposed that the isolates represent a new genus and species, Meganema perideroedes gen. nov., sp. nov. The type strain of Meganema perideroedes is strain Gr1(T) (=DSM 15528(T) =ATCC BAA-740(T)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marsupial spermatozoa tolerate cold shock well, but differ in cryopreservation tolerance. In an attempt to explain these phenomena, the fatty acid composition of the sperm membrane from caput and cauda epididymides of the Eastern grey kangaroo, koala, and common wombat was measured and membrane sterol levels were measured in cauda epididymidal spermatozoa. While species-related differences in the levels of linolenic acid (18:3, n-6) and arachidonic acid (20:4, n-6) were observed in caput epididymal spermatozoa, these differences failed to significantly alter the ratio of unsaturated/saturated membrane fatty acids. However in cauda epididymidal spermatozoa, the ratio of unsaturated/saturated membrane fatty acids in koala and kangaroo spermatozoa was approximately 7.6 and 5.2, respectively; substantially higher than any other mammalian species so far described. Koala spermatozoal membranes had a higher ratio of unsaturated/saturated membrane fatty acids than that of wombat spermatozoa (t = 3.81; df = 4; p less than or equal to 0.02); however, there was no significant difference between wombat and kangaroo spermatozoa. The highest proportions of DHA (22:6, n-3), the predominant membrane fatty acid in cauda epididymidal spermatozoa, were found in wombat and koala spermatozoa. While species-related differences in membrane sterol levels (cholesterol and desmosterol) were observed in cauda epididymidal spermatozoa, marsupial membrane sterol levels are very low. Marsupial spermatozoal membrane analyses do not support the hypothesis that a high ratio of saturated/unsaturated membrane fatty acids and low membrane sterol levels predisposes spermatozoa to cold shock damage. Instead, cryogenic tolerance appears related to DHA levels. (C) 2004 Elsevier Inc. All rights reserved.