37 resultados para Organic field-effect transistors, Self-assembly, 1D object, Monolayer, Solution processing
Resumo:
A broad review of technologically focused work concerning biomolecules at interfaces is presented. The emphasis is on developments in interfacial biomolecular engineering that may have a practical impact in bioanalysis, tissue engineering, emulsion processing or bioseparations. We also review methods for fabrication in an attempt to draw out those approaches that may be useful for product manufacture, and briefly review methods for analysing the resulting interfacial nanostructures. From this review we conclude that the generation of knowledge and-innovation at the nanoscale far exceeds our ability to translate this innovation into practical outcomes addressing a market need, and that significant technological challenges exist. A particular challenge in this translation is to understand how the structural properties of biomolecules control the assembled architecture, which in turn defines product performance, and how this relationship is affected by the chosen manufacturing route. This structure-architecture-process-performance (SAPP) interaction problem is the familiar laboratory scale-up challenge in disguise. A further challenge will be to interpret biomolecular self- and directed-assembly reactions using tools of chemical reaction engineering, enabling rigorous manufacturing optimization of self-assembly laboratory techniques. We conclude that many of the technological problems facing this field are addressable using tools of modem chemical and biomolecular engineering, in conjunction with knowledge and skills from the underpinning sciences. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Hydrophobins are small (similar to 100 aa) proteins that have an important role in the growth and development of mycelial fungi. They are surface active and, after secretion by the fungi, self-assemble into amphipathic membranes at hydrophobic/hydrophilic interfaces, reversing the hydrophobicity of the surface. In this study, molecular dynamics simulation techniques have been used to model the process by which a specific class I hydrophobin, SC3, binds to a range of hydrophobic/ hydrophilic interfaces. The structure of SC3 used in this investigation was modeled based on the crystal structure of the class II hydrophobin HFBII using the assumption that the disulfide pairings of the eight conserved cysteine residues are maintained. The proposed model for SC3 in aqueous solution is compact and globular containing primarily P-strand and coil structures. The behavior of this model of SC3 was investigated at an air/water, an oil/water, and a hydrophobic solid/water interface. It was found that SC3 preferentially binds to the interfaces via the loop region between the third and fourth cysteine residues and that binding is associated with an increase in a-helix formation in qualitative agreement with experiment. Based on a combination of the available experiment data and the current simulation studies, we propose a possible model for SC3 self-assembly on a hydrophobic solid/water interface.
Resumo:
The inherent self-recognition properties of DNA have led to its use as a scaffold for various nanotechnology self-assembly applications, with macromolecular complexes, metallic and semiconducting nanoparticles, proteins, inter alia, being assembled onto a designed DNA scaffold. Such structures may typically comprise a number of DNA molecules organized into macromolecules. Many studies have used synthetic methods to produce the constituent DNA molecules, but this typically constrains the molecules to be no longer than around 100 base pairs (30 nm). However, applications that require larger self-assembling DNA complexes, several tens of nanometers or more, need to be generated by other techniques. Here, we present a generic technique to generate large linear, branched, and/or circular DNA macromolecular complexes. The effectiveness of this technique is demonstrated here by the use of Lambda Bacteriophage DNA as a template to generate single- and double-branched DNA structures approximately 120 nm in size.
Resumo:
Although poly(alpha-hydroxy esters), especially the PLGA family of lactic acid/glycolic acid copolymers, have many properties which make them promising materials for tissue engineering, the inherent chemistry of surfaces made from these particular polymers is problematic. In vivo, they promote a strong foreign-body response as a result of nonspecific adsorption and denaturation of serum proteins, which generally results in the formation of a nonfunctional fibrous capsule. Surface modification post-production of the scaffolds is an often-utilized approach to solving this problem, conceptually allowing the formation of a scaffold with mechanical properties defined by the bulk material and molecular-level interactions defined by the modified surface properties. A promising concept is the so-called blank slate: essentially a surface that is rendered resistant to nonspecific protein adsorption but can be readily activated to covalently bind bio-functional molecules such as extracellular matrix proteins, growth factors or polysaccharides. This study focuses on the use of the quartz crystal microbalance (QCM) to follow the layer-by-layer (LbL) electrostatic deposition of high molecular weight hyaluronic acid and chitosan onto PLGA surfaces rendered positively charged by aminolysis, to form a robust, protein-resistant coating. We further show that this surface may be further functionalized via the covalent attachment of collagen IV, which may then be used as a template for the self-assembly of basement membrane components from dilute Matrigel. The response of NIH-3T3 fibroblasts to these surfaces was also followed and shown to closely parallel the results observed in the QCM.
Resumo:
This review discusses the mechanisms of oxygen activation by cytochrome P450 enzymes, the possible catalytic roles of the various iron-oxygen species formed in the catalytic cycle, and progress in understanding the mechanisms of hydrocarbon hydroxylation, heteroatom oxidation, and olefin epoxidation. The focus of the review is on recent results, but earlier work is discussed as appropriate. The literature through to February 2002 is surveyed, and 175 referenced are cited.
Resumo:
Primary Objective. To extend the capabilities of current electropalatography (EPG) systems by developing a pressure-sensing EPG system. An initial trial of a prototype pressure-sensing palate will be presented. Research Design. The processes involved in designing the pressure sensors are outlined, with Hall effect transistors being selected. These units are compact, offer high sensitivity and are inexpensive. An initial prototype acrylic palate was constructed with five embedded pressure sensors. Syllable repetitions were recorded from one adult female. Main Outcomes, Results and Future Directions. The pressure-sensing palate was capable of recording dynamic tongue-to-palate pressures, with minimal to no interference to speech detected perceptually. With a restricted number of sensors, problems were encountered in optimally positioning the sensors to detect the consonant lingual pressures. Further developments are planned for various aspects of the pressure-sensing system. Conclusions. Although only in the prototype stage, the pressure-sensing palate represents the new generation of EPG. Comprehensive analysis of tongue-to-palate contacts, including pressure measures, is expected to enable more specific and effective therapeutic techniques to be developed for a variety of speech disorders.
Resumo:
A porous, high surface area TiO2 with anatase or rutile crystalline domains is advantageous for high efficiency photonic devices. Here, we report a new route to the synthesis of mesoporous titania with full anatase crystalline domains. This route involves the preparation of anatase nanocrystalline seed suspensions as the titania precursor and a block copolymer surfactant, Pluronic P123 as the template for the hydrothermal self-assembly process. A large pore (7 - 8 nm) mesoporous titania with a high surface area of 106 - 150 m(2)/g after calcination at 400degreesC for 4 h in air is achieved. Increasing the hydrothermal temperature decreases the surface area and creates larger pores. Characteristics of the seed precursors as well as the resultant mesoporous titania powder were studied using XRD analysis, N-2-adsorption/desorption analysis, and TEM. We believe these materials will be especially useful for photoelectrochemical solar cell and photocatalysis applications.
Resumo:
Mesostructured titania thin films were prepared by an evaporation-induced self-assembly process. The highly acidic sot precursors contained titanium(IV) tetraisopropoxide (TTIP) as a titanium source, a tri-block copolymer Pluronic P123 as a template, and acetylacetonate and HCl as hydrolysis inhibitors. Characteristics of the resultant titania thin films were studied using X-ray diffraction (XRD) analysis, N-2-adsorption/desorption analysis, and transmission electron microscopy (TEM). XRD and TEM investigations on the as-synthesised films revealed the appearance of cubic-like, pseudohexagonal, and lamellar mesophases; depending on the amount of water in the sols of film precursors. Template removal by a calcination process yields high surface area (320-360 m(2)/g) mesoporous materials with crystalline anatase frameworks. Water content also influences the degree of anatase crystallinity of the calcined films. Higher water content resulted in improved anatase crystallinity. These nanostructured materials are of interest for photocatalysts, pbotoelectrochemical solar cells and other photonic devices. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In order to investigate the chromosomal genotoxicity of nitrobenzene and benzonitrile, we studied the induction of micronuclei (MN) by these test compounds in V79 cells, as well as effects on the formation and stability of microtubules and on motor protein functions. No cytotoxicity was seen in V79 cell cultures in terms of Neutral red uptake after 18 h treatment with up to 1 mM nitrobenzene or 1 mM benzonitrile. Subsequently, a concentration range up to 100 muM was used in the experiments on induction of MN. Both test compounds exhibit a weak, but definitely positive test result compared to the solvent (DMSO) control. Minimal effect concentrations of nitrobenzene and benzonitrile appeared as low as 0.01 muM, and no-effect-concentrations were between 0.001 and 0.005 muM. Clearly enhanced MN rates were found at 0.1 muM and higher. Both, nitrobenzene and benzonitrile, induced mostly kinetochor (CREST)-positive micronuclei, thus characterising the chromosomal effects as aneugenic. In cell-free assays, a slight effect on tubulin assembly was observed at 1 mM nitrobenzene without addition of DMSO. Higher concentrations (5 mM) led to secondary effects. In presence of 1% DMSO, nitrobenzene exerted no detectable effect on tubulin assembly up to the solubility limit in water of about 15 mM. For benzonitrile in presence of DMSO, a clear dose-response of inhibition of tubulin assembly at 37degreesC was seen above the no-effect-concentration of 2 mM, with an IC50 of 13 mM and protein denaturation starting above a level of about 20 mM. The nature of the effects of nitrobenzene and benzonitrile on the association of tubulin to form microtubules was confirmed by electron microscopy. Treatment by either 5 mM nitrobenzene or 13 mM benzonitrile plus 1% DMSO left the microtubular structure intact whereas 5 mM nitrobenzene, in absence of DMSO, led to irregular cluster formations. The experiments demonstrate that both nitrobenzene and benzonitrile, in millimolar concentration ranges, may lead to interference with tubulin assembly in a cell-free system. The functionality of the tubulin-kinesin motor protein system was assessed using the microtubule gliding assay. Nitrobenzene affected the gliding velocity in a concentration-dependent manner, starting at about 7.5 muM and reaching complete inhibition of motility at 30 muM, whereas benzonitrile up to 200 muM did not affect the kinesin-driven gliding velocity. The micronucleus assay data demonstrate a chromosomal endpoint of genotoxicity of nitrobenzene and benzonitrile. Aneugenic effects of both compounds occur at remarkably low concentrations, with lowest-effect-concentrations being 0.1 muM. This points to the relevance of interactions with the cellular spindle apparatus.
Resumo:
Interactions of mercury(II) with the microtubule network of cells may lead to genotoxicity. Complexation of mercury(II) with EDTA is currently being discussed for its employment in detoxification processes of polluted sites. This prompted us to re-evaluate the effects of such complexing agents on certain aspects of mercury toxicity, by examining the influences of mercury(H) complexes on tubulin assembly and kinesin-driven motility of microtubules. The genotoxic effects were studied using the micronucleus assay in V79 Chinese hamster fibroblasts. Mercury(II) complexes with EDTA and related chelators interfered dose-dependently with tubulin assembly and microtubule motility in vitro. The no-effect-concentration for assembly inhibition was 1muM of complexed Hg(II), and for inhibition of motility it was 0.05 muM, respectively. These findings are supported on the genotoxicity level by the results of the micronucleus assay, with micronuclei being induced dose-dependently starting at concentrations of about 0.05 muM of complexed Hg(II). Generally, the no-effect-concentrations for complexed mercury(II) found in the cell-free systems and in cellular assays (including the micronucleus test) were identical with or similar to results for mercury tested in the absence of chelators. This indicates that mercury(II) has a much higher affinity to sulfhydryls of cytoskeletal proteins than to this type of complexing agents. Therefore, the suitability of EDTA and related compounds for remediation of environmental mercury contamination or for other detoxification purposes involving mercury has to be questioned. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Block copolymers have become an integral part of the preparation of complex architectures through self-assembly. The use of reversible addition-fragmentation chain transfer (RAFT) allows blocks ranging from functional to nonfunctional polymers to be made with predictable molecular weight distributions. This article models block formation by varying many of the kinetic parameters. The simulations provide insight into the overall polydispersities (PDIs) that will be obtained when the chain-transfer constants in the main equilibrium steps are varied from 100 to 0.5. When the first dormant block [polymer-S-C(Z)=S] has a PDI of 1 and the second propagating radical has a low reactivity to the RAFT moiety, the overall PDI will be greater than 1 and dependent on the weight fraction of each block. When the first block has a PDI of 2 and the second propagating radical has a low reactivity to the RAFT moiety, the PDI will decrease to around 1.5 because of random coupling of two broad distributions. It is also shown how we can in principle use only one RAFT agent to obtain block copolymers with any desired molecular weight distribution. We can accomplish this by maintaining the monomer concentration at a constant level in the reactor over the course of the reaction. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Highly ordered mesoporous bioactive glasses (MBGs) with different compositions have been synthesized by a combination of surfactant templating, sol-gel method and evaporation-induced self-assembly (EISA) processes. The texture properties and compositional homogeneity of MBGs have been characterized and compared with conventional bioactive glasses (BGs) synthesized in the absence of surfactants by evaporation method. The formation mechanism (pore - composition dependence) and compositional homogeneity in the case of MBG materials are different from those in conventional BGs. Unlike conventional sol-gel-derived BGs that shows a direct correlation between their composition and pore architecture, MBGs with different compositions may possess similar pore volume and uniformly distributed pore size when the same structure-directing agent is utilized. The framework of MBG is homogeneously distributed in composition at the nanoscale and the inorganic species generally exists in the form of amorphous phase. MBGs calcined at temperatures
Resumo:
Without introduction of any stabilizer, the mesoporous nanocrystalline zirconia with lamellar and MSU structure was obtained via solid state reaction coupled with surfactant templating method. The phase, surface area and pore structure of zirconia prepared with this novel method could be designed, tailored and controlled by varying synthesis parameters. The phase transformation was controlled by particle size. The mesostructure possesses nanocrystalline pore wall, which renders it more thermally stable than amorphous framework. The results suggest strongly that in solid state synthesis system mesostructure formation still follow the supramolecular self-assembly mechanism. The lamellar and reverse hexagonal structure could be transformed at different OH-/Zr molar ratios in order to sustain the low surface energy of the mesophases. The lamellar structure was preferred at higher OH-/Zr molar ratios but reverse hexagonal was at low ratios.
Resumo:
Virus-like particles (VLPs) are of interest in vaccination, gene therapy and drug delivery, but their potential has yet to be fully realized. This is because existing laboratory processes, when scaled, do not easily give a compositionally and architecturally consistent product. Research suggests that new process routes might ultimately be based on chemical processing by self-assembly, involving the precision manufacture of precursor capsomeres followed by in vitro VLP self-assembly and scale-up to required levels. A synergistic interaction of biomolecular design and bioprocess engineering (i.e. biomolecular engineering) is required if these alternative process routes and, thus, the promise of new VLP products, are to be realized.
Resumo:
Ordered mesoporous bioactive glasses (MBGs) with different compositions were prepared by using nonionic block copolymer surfactants as structure-directing agents through an evaporation-induced self-assembly process. Their in-vitro bioactivities were studied in detail by electron microscopy, Fourier-transform infrared spectroscopy, and inductively coupled plasma (ICP) atomic emission spectroscopy. The ICP element analysis results were further calculated in terms of the total consumption of Ca and P, Delta[Ca]/Delta[P] ratios, and ionic activity product (IP) of hydroxyapatite. Through the above analysis, it is clear that MBGs show a different structure-bioactivity correlation compared to conventional sol-gel-derivcd BGs. The in vitro bioactivity of MBGs is dependent on the Si/Ca ratio in the network when the other material parameters such as the mesostructure and texture properties (pore size, pore volume) are controlled. MBG 80S15C with relatively lower calcium content exhibits the best in vitro bioactivity, in contrast to conventional sol-gel-derived BGs where usually higher calcium percentage BGs (e.g. 60S35C) show better bioactivity. Calcination temperature is another important factor that influences the in vitro bioactivity. According to our results, MBGs calcined at 973 K may possess the best in vitro bioactivity. The influences of the composition and calcination temperature upon bioactivity are explained in terms of the unique structures of MBGs. (c) 2006 Elsevier Ltd. All rights reserved.