56 resultados para Vinylketene-acylallene Rearrangement
Resumo:
1,3-Phenyl shifts interconvert imidoylketenes 1 and alpha-oxoketenimines 2 and, likewise, alpha-oxoketenes 3 automerize by this 1,3-shift. These rearrangements usually take place in the gas phase under conditions of. ash vacuum thermolysis. Energy profiles calculated at the B3LYP/6-31G(d, p) and B3LYP/6311 + G(3df,2p)//B3LYP/6-31G(d,p) levels demonstrate that electron donating substituents ( D) in the migrating phenyl group and electron withdrawing ones ( W) in the non-migrating phenyl group, can stabilise the transition states TS1 and TS2 to the extent that activation barriers of ca. 100 kJ mol(-1) or less are obtained; i.e. enough to make these reactions potentially observable in solution at ordinary temperatures. The calculated transition state energies Delta G(TS1) show an excellent correlation with the Hammett constants sigma(p)(W) and sigma(p) +(D).
Resumo:
Imidoylketenes 11 and oxoketenimines 12 are generated by flash vacuum thermolysis of Meldrum's acid derivatives 9, pyrrolediones 17 and 18, and triazole 19 and are observed by IR spectroscopy. Ketenimine-3-carboxylic acid esters 12a are isolable at room temperature. Ketenes 11 and ketenimines 12 undergo rapid interconversion in the gas phase, and the ketenes cyclize to 4-quinolones 13. When using an amine leaving group in Meldrum's acid derivatives 9c, the major reaction products are aryliminopropadienones, ArN=C=C=C=O (15). The latter react with 1 equiv of nucleophile to produce ketenimines 12 and with 2 equiv to afford maIonic acid imide derivatives 16. N-Arylketenimine-C-carboxamides 12c cyclize to quinolones 13c via the transient amidinoketenes 11c at temperatures of 25-40 degrees C. This implies rapid interconversion of ketenes and ketenimines by a 1,3-shift of the dimethylamino group, even at room temperature. This interconversion explains previously poorly understood outcomes of the ynamine-isocyanate reaction. The solvent dependence of the tautomerism of 4-quinolones/4-quinolinols is discussed. Rotational barriers of NMe2 groups in amidoketenimines 12c and malonioc amides and amidines 16 (24) are reported.
Resumo:
1. An isolated perfused rat liver (IPRL) preparation was used to investigate separately the disposition of the non-steroidal anti-inflammatory drug (NSAID) naproxen (NAP), its reactive acyl glucuronide metabolite (NAG) and a mixture of NAG rearrangement isomers (isoNAG), each at 30 mug NAP equivalents ml(-1) perfusate (n = 4 each group). 2. Following administration to the IPRL, NAP was eliminated slowly in a log-linear manner with an apparent elimination half-life (t(1/2)) of 13.4 +/-4.4 h. No metabolites were detected in perfusate, while NAG was the only metabolite present in bile in measurable amounts (3.9 +/-0.8%, of the dose). Following their administration to the IPRL, both NAG and isoNAG were rapidly hydrolysed (t(1/2) in perfusate=57 +/-3 and 75 +/- 14min respectively). NAG also rearranged to isoNAG in the perfusate. Both NAG and isoNAG were excreted intact in bile (24.6 and 14.8% of the NAG and isoNAG doses, respectively). 3. Covalent NAP-protein adducts in the liver increased as the dose changed from NAP to NAG to isoNAG (0.20 to 0.34 to 0.48% of the doses, respectively). Similarly, formation of covalent NAP-protein adducts in perfusate were greater in isoNAG-dosed perfusions. The comparative results Suggest that isoNAG is a better substrate for adduct formation with liver proteins than NAG.
Resumo:
Many non-steroidal anti-inflammatory drugs (NSAIDs) which form acyl glucuronide conjugates as major metabolites have shown an antiproliferative effect on colorectal tumors. This study assesses the extent to which rearrangement of an acyl glucuronide metabolite of a model NSAID into beta -glucuronidase-resistant isomers facilitates its passage through the small intestine to reach the colon. Rats were dosed orally with diflunisal (DF), its acyl glucuronide (DAG) and a mixture of rearrangement isomers (iso-DAG) at 10 mg DF equivalents/kg. The parent drug DF appeared in plasma after all doses, with maximum concentrations of 20.5 +/- 2.5, 28.8 +/- 8.3 and 11.0 +/- 1.6 mug DF/ml respectively, obtained at 3.8 +/- 0.3, 3.6 +/- 1.8 and 7.5 +/- 0.9 hr after the DF, DAG and iso-DAG doses respectively. At 48 hr, 16.2 +/- 3.3, 19.8 +/- 0.8 and 42.9 +/- 10.1% of the doses respectively were recovered in feces, with less than or equal to 1% remaining in the intestine. About half of each dose was recovered as DF and metabolites in 48 hr urine: for DF and DAG doses, the majority was in the first 24 hr urine. whereas for iso-DAG doses, recoveries in the first and second 24 hr periods were similar. The results show that hydrolysis of both DAG and iso-DAG, and absorption of liberated DF, occur during passage through the gut, but that these processes occur more slowly and to a lesser degree for iso-DAG. The intrinsic hydrolytic capacities of various intestinal segments (including contents) towards DAG and iso-DAG were obtained by incubating homogenates under saturating concentrations of DAG/iso-DAG at 37 degreesC. Upper small intestine, lower small intestine, caecum and colon released 2400, 3200, 9200 and 22800 mug DF/hr/g tissue plus contents respectively from DAG substrate, and 18, 10, 140 and 120 mug DF/hr/g tissue plus contents respectively from iso-DAG substrate. The much greater resistance of iso-DAG to hydrolysis appears attributable to its resistance to beta -glucuronidases. The data suggest that in rats dosed with DF, DAG excreted in bile would be substantially hydrolysed in the small intestine and liberated DF reabsorbed, but that portion which rearranges to iso-DAG would likely reach the colon. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
A number of studies indicated that lineages of animals with high rates of mitochondrial (mt) gene rearrangement might have high rates of mt nucleotide substitution. We chose the hemipteroid assemblage and the Insecta to test the idea that rates of mt gene rearrangement and mt nucleotide substitution are correlated. For this purpose, we sequenced the mt genome of a lepidopsocid from the Psocoptera, the only order of hemipteroid insects for which an entire mtDNA sequence is not available. The mt genome of this lepidopsocid is circular, 16,924 bp long, and contains 37 genes and a putative control region; seven tRNA genes and a protein-coding gene in this genome have changed positions relative to the ancestral arrangement of mt genes of insects. We then compared the relative rates of nucleotide substitution among species from each of the four orders of hemipteroid insects and among the 20 insects whose mt genomes have been sequenced entirely. All comparisons among the hernipteroid insects showed that species with higher rates of gene rearrangement also had significantly higher rates of nucleotide substitution statistically than did species with lower rates of gene rearrangement. In comparisons among the 20 insects, where the mt genomes of the two species differed by more than five breakpoints, the more rearranged species always had a significantly higher rate of nucleotide substitution than the less rearranged species. However, in comparisons where the mt genomes of two species differed by five or less breakpoints, the more rearranged species did not always have a significantly higher rate of nucleotide substitution than the less rearranged species. We tested the statistical significance of the correlation between the rates of mt gene rearrangement and mt nucleotide substitution with nine pairs of insects that were phylogenetically independent from one 2 another. We found that the correlation was positive and statistically significant (R-2 = 0.73, P = 0.01; R-s = 0.67, P < 0.05). We propose that increased rates of nucleotide substitution may lead to increased rates of gene rearrangement in the mt genomes of insects.
Resumo:
Certain 3-azabicyclo[3.3.1] nonane derivatives undergo unprecedented stereospecific skeletal cleavage when subjected to light affording a novel heterotricyclic skeleton.
Resumo:
FVT of pyrroledione 10 affords the NH-imidoylketene 11, which is characterized by its matrix isolation IR spectrum ( 2117 cm 1). On warming above 170 K, 11 dimerizes to the oxazinone 13, the X-ray crystal structure of which is reported. Imidoylketene 11 also undergoes a (reversible) 1,3-phenyl shift to afford the detectable alpha-oxoketenimine 16 (2062 cm(-1)) which at FVT temperatures above 400degreesC, isomerizes to 2-cyano-2-phenylacetophenone 18 (optimally at 700degreesC). Moreover, imidoylketene 11 can cyclize to azetinone 19, detectable at FVT temperatures up to 570degreesC, which undergoes cycloreversion to diphenylacetylene 20 and isocyanic acid (HNCO) 21. Energy profiles calculated at the B3LYP/6-31G** level for the unsubstituted imidoylketene, the diphenylimidoylketene 11 and the N-tert-butylimidoylketene are also reported.
Resumo:
2-Quinolylcarbene 23 and 1-isoquinolylcarbene 33 are generated by flash vacuum thermolysis (FVT) of the corresponding triazolo[1,5-a]quinoline and triazolo[5,1-a]isoquinoline 19 and 29, as well as 2-(5-tetrazolyl)quinoline and 1-(5-tetrazolyl)isoquinoline 20 and 30, respectively. These carbenes rearrange to 1- and 2-naphthylnitrene 21 and 31, respectively, and the nitrenes are also generated by FVT of 1- and 2-naphthyl azides 18 and 28. The products of FVT of both the nitrene and carbene precursors are the 2- and 3-cyanoindenes 26 and 27 together with the nitrene dimers, viz. azonaphthalenes 25 and 35, and the H-abstraction products, aminonaphthalenes 24 and 34. All the azide, triazole, and tetrazole precursors yield 3-cyanoindene 26 as the principal ring contraction product under conditions of low FVT temperature (340-400 degreesC) and high pressure (1 Torr N-2 as carrier gas for the purpose of collisional deactivation). This ring contraction reaction is strongly subject to chemical activation, which caused extensive isomerization of 3-cyanoindene to 2-cyanoindene under conditions of low pressure (10(-3) Torr). 2-Cyanoindene is calculated to be ca. 1.7 kcal/mol below 3-cyanoindene in energy; accordingly, high-temperature FVT of these cyanoindenes always gives mixtures of the two compounds with the 2-cyano isomer dominating. Photolysis of trizolo[1,5-a]quinoline 19 and triazolo[5,1-a]isoquinoline 29 in Ar matrixes causes partial ring opening to the corresponding 2-diazomethylquinoline 19' and 1-diazomethylisoquinoline 29'. The photolysis of the former gives rise to a small amount of the cyclic ketenimine 22, the intermediate connecting 2-quinolylcarbene and 1-naphthylnitrene.
Resumo:
Humulene-4,5-monoepoxide, 1, may rearrange to the cyclopropyl diol 2 during chromatography over silica. The rearrangement can be reversed with acid.
Resumo:
Flash vacuum thermolysis (FVT) of 9-azidophenanthrene 8, 6-(5-tetrazolyl)phenanthridine 18, and [1,2,3]triazolo[1,5-f]phenanthridine 19 yields 9-cyanofluorene 12 as the principal product and 4-cyanofluorene as a minor product. In all cases, when the product is condensed at or below 77 K, the seven-membered ring ketenimine 24 is detectable by IR spectroscopy (1932 cm(-1)) up to 200 K. Photolysis of Ar matrix isolated 8 at lambda = 308 or 313 nm generates at first the azirine 26, rapidly followed by the ylidic cumulene 27. The latter reverts to azirine 26 at lambda > 405 nm, and the azirine reverts to the ylidic cumulene at 313 nm. Nitrene 9 is observed by ESR spectroscopy following FVT of either azide 8, tetrazole 18, or triazole 19 with Ar matrix isolation of the products. Nitrene 9 and carbene 21 are observed by ESR spectroscopy in the Ar matrix photolyses of azide 8 and triazole 19, respectively.
Resumo:
Metastable but isolable mesoionic 1,3-oxazinium 4-olates 9d-f undergo ring opening to acylketenes 10 at or near room temperature. The ketenes undergo intramolecular criss-cross [2 + 2] cycloaddition to afford 3-azabicyclo[3.1.1]heptanetriones 12. The structure of 12d was established by X-ray crystallography.
Resumo:
Specific 3-azabicyclo[3.3.1]nonane derivatives undergo skeletal cleavage when subjected to light or Lewis acidic conditions affording novel heteratricycles, which is in stark contrast to 3-oxabicyclo[3.3.1]nonanes. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The Curtius rearrangement is a synthesis of isocyanates (R-N=C=O) by thermal or photochemical rearrangement of acyl acides and/or acylnitrenes. The photochemical rearrangement of benzoyl azide is now shown for the first time to produce a small amount of phenyl cyanate (Ph-O-CN) together with phenyl isocyanate.