2 resultados para 3D numerical modeling

em Université Laval Mémoires et thèses électroniques


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les anodes de carbone sont des éléments consommables servant d’électrode dans la réaction électrochimique d’une cuve Hall-Héroult. Ces dernières sont produites massivement via une chaine de production dont la mise en forme est une des étapes critiques puisqu’elle définit une partie de leur qualité. Le procédé de mise en forme actuel n’est pas pleinement optimisé. Des gradients de densité importants à l’intérieur des anodes diminuent leur performance dans les cuves d’électrolyse. Encore aujourd’hui, les anodes de carbone sont produites avec comme seuls critères de qualité leur densité globale et leurs propriétés mécaniques finales. La manufacture d’anodes est optimisée de façon empirique directement sur la chaine de production. Cependant, la qualité d’une anode se résume en une conductivité électrique uniforme afin de minimiser les concentrations de courant qui ont plusieurs effets néfastes sur leur performance et sur les coûts de production d’aluminium. Cette thèse est basée sur l’hypothèse que la conductivité électrique de l’anode n’est influencée que par sa densité considérant une composition chimique uniforme. L’objectif est de caractériser les paramètres d’un modèle afin de nourrir une loi constitutive qui permettra de modéliser la mise en forme des blocs anodiques. L’utilisation de la modélisation numérique permet d’analyser le comportement de la pâte lors de sa mise en forme. Ainsi, il devient possible de prédire les gradients de densité à l’intérieur des anodes et d’optimiser les paramètres de mise en forme pour en améliorer leur qualité. Le modèle sélectionné est basé sur les propriétés mécaniques et tribologiques réelles de la pâte. La thèse débute avec une étude comportementale qui a pour objectif d’améliorer la compréhension des comportements constitutifs de la pâte observés lors d’essais de pressage préliminaires. Cette étude est basée sur des essais de pressage de pâte de carbone chaude produite dans un moule rigide et sur des essais de pressage d’agrégats secs à l’intérieur du même moule instrumenté d’un piézoélectrique permettant d’enregistrer les émissions acoustiques. Cette analyse a précédé la caractérisation des propriétés de la pâte afin de mieux interpréter son comportement mécanique étant donné la nature complexe de ce matériau carboné dont les propriétés mécaniques sont évolutives en fonction de la masse volumique. Un premier montage expérimental a été spécifiquement développé afin de caractériser le module de Young et le coefficient de Poisson de la pâte. Ce même montage a également servi dans la caractérisation de la viscosité (comportement temporel) de la pâte. Il n’existe aucun essai adapté pour caractériser ces propriétés pour ce type de matériau chauffé à 150°C. Un moule à paroi déformable instrumenté de jauges de déformation a été utilisé pour réaliser les essais. Un second montage a été développé pour caractériser les coefficients de friction statique et cinétique de la pâte aussi chauffée à 150°C. Le modèle a été exploité afin de caractériser les propriétés mécaniques de la pâte par identification inverse et pour simuler la mise en forme d’anodes de laboratoire. Les propriétés mécaniques de la pâte obtenues par la caractérisation expérimentale ont été comparées à celles obtenues par la méthode d’identification inverse. Les cartographies tirées des simulations ont également été comparées aux cartographies des anodes pressées en laboratoire. La tomodensitométrie a été utilisée pour produire ces dernières cartographies de densité. Les résultats des simulations confirment qu’il y a un potentiel majeur à l’utilisation de la modélisation numérique comme outil d’optimisation du procédé de mise en forme de la pâte de carbone. La modélisation numérique permet d’évaluer l’influence de chacun des paramètres de mise en forme sans interrompre la production et/ou d’implanter des changements coûteux dans la ligne de production. Cet outil permet donc d’explorer des avenues telles la modulation des paramètres fréquentiels, la modification de la distribution initiale de la pâte dans le moule, la possibilité de mouler l’anode inversée (upside down), etc. afin d’optimiser le processus de mise en forme et d’augmenter la qualité des anodes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L’augmentation exponentielle de la demande de bande passante pour les communications laisse présager une saturation prochaine de la capacité des réseaux de télécommunications qui devrait se matérialiser au cours de la prochaine décennie. En effet, la théorie de l’information prédit que les effets non linéaires dans les fibres monomodes limite la capacité de transmission de celles-ci et peu de gain à ce niveau peut être espéré des techniques traditionnelles de multiplexage développées et utilisées jusqu’à présent dans les systèmes à haut débit. La dimension spatiale du canal optique est proposée comme un nouveau degré de liberté qui peut être utilisé pour augmenter le nombre de canaux de transmission et, par conséquent, résoudre cette menace de «crise de capacité». Ainsi, inspirée par les techniques micro-ondes, la technique émergente appelée multiplexage spatial (SDM) est une technologie prometteuse pour la création de réseaux optiques de prochaine génération. Pour réaliser le SDM dans les liens de fibres optiques, il faut réexaminer tous les dispositifs intégrés, les équipements et les sous-systèmes. Parmi ces éléments, l’amplificateur optique SDM est critique, en particulier pour les systèmes de transmission pour les longues distances. En raison des excellentes caractéristiques de l’amplificateur à fibre dopée à l’erbium (EDFA) utilisé dans les systèmes actuels de pointe, l’EDFA est à nouveau un candidat de choix pour la mise en œuvre des amplificateurs SDM pratiques. Toutefois, étant donné que le SDM introduit une variation spatiale du champ dans le plan transversal de la fibre, les amplificateurs à fibre dopée à l’erbium spatialement intégrés (SIEDFA) nécessitent une conception soignée. Dans cette thèse, nous examinons tout d’abord les progrès récents du SDM, en particulier les amplificateurs optiques SDM. Ensuite, nous identifions et discutons les principaux enjeux des SIEDFA qui exigent un examen scientifique. Suite à cela, la théorie des EDFA est brièvement présentée et une modélisation numérique pouvant être utilisée pour simuler les SIEDFA est proposée. Sur la base d’un outil de simulation fait maison, nous proposons une nouvelle conception des profils de dopage annulaire des fibres à quelques-modes dopées à l’erbium (ED-FMF) et nous évaluons numériquement la performance d’un amplificateur à un étage, avec fibre à dopage annulaire, à ainsi qu’un amplificateur à double étage pour les communications sur des fibres ne comportant que quelques modes. Par la suite, nous concevons des fibres dopées à l’erbium avec une gaine annulaire et multi-cœurs (ED-MCF). Nous avons évalué numériquement le recouvrement de la pompe avec les multiples cœurs de ces amplificateurs. En plus de la conception, nous fabriquons et caractérisons une fibre multi-cœurs à quelques modes dopées à l’erbium. Nous réalisons la première démonstration des amplificateurs à fibre optique spatialement intégrés incorporant de telles fibres dopées. Enfin, nous présentons les conclusions ainsi que les perspectives de cette recherche. La recherche et le développement des SIEDFA offriront d’énormes avantages non seulement pour les systèmes de transmission future SDM, mais aussi pour les systèmes de transmission monomode sur des fibres standards à un cœur car ils permettent de remplacer plusieurs amplificateurs par un amplificateur intégré.