10 resultados para moving least squares approximation

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Least squares solutions are a very important problem, which appear in a broad range of disciplines (for instance, control systems, statistics, signal processing). Our interest in this kind of problems lies in their use of training neural network controllers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Least squares solutions are a very important problem, which appear in a broad range of disciplines (for instance, control systems, statistics, signal processing). Our interest in this kind of problems lies in their use of training neural network controllers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the parallelization of a new learning algorithm for multilayer perceptrons, specifically targeted for nonlinear function approximation purposes, is discussed. Each major step of the algorithm is parallelized, a special emphasis being put in the most computationally intensive task, a least-squares solution of linear systems of equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the fluctuations in population abundance is a central question in fisheries. Sardine fisheries is of great importance to Portugal and is data-rich and of primary concern to fisheries managers. In Portugal, sub-stocks of Sardina pilchardus (sardine) are found in different regions: the Northwest (IXaCN), Southwest (IXaCS) and the South coast (IXaS-Algarve). Each of these sardine sub-stocks is affected differently by a unique set of climate and ocean conditions, mainly during larval development and recruitment, which will consequently affect sardine fisheries in the short term. Taking this hypothesis into consideration we examined the effects of hydrographic (river discharge), sea surface temperature, wind driven phenomena, upwelling, climatic (North Atlantic Oscillation) and fisheries variables (fishing effort) on S. pilchardus catch rates (landings per unit effort, LPUE, as a proxy for sardine biomass). A 20-year time series (1989-2009) was used, for the different subdivisions of the Portuguese coast (sardine sub-stocks). For the purpose of this analysis a multi-model approach was used, applying different time series models for data fitting (Dynamic Factor Analysis, Generalised Least Squares), forecasting (Autoregressive Integrated Moving Average), as well as Surplus Production stock assessment models. The different models were evaluated, compared and the most important variables explaining changes in LPUE were identified. The type of relationship between catch rates of sardine and environmental variables varied across regional scales due to region-specific recruitment responses. Seasonality plays an important role in sardine variability within the three study regions. In IXaCN autumn (season with minimum spawning activity, larvae and egg concentrations) SST, northerly wind and wind magnitude were negatively related with LPUE. In IXaCS none of the explanatory variables tested was clearly related with LPUE. In IXaS-Algarve (South Portugal) both spring (period when large abundances of larvae are found) northerly wind and wind magnitude were negatively related with LPUE, revealing that environmental effects match with the regional peak in spawning time. Overall, results suggest that management of small, short-lived pelagic species, such as sardine quotas/sustainable yields, should be adapted to a regional scale because of regional environmental variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Adaptive Generalized Predictive Control (AGPC) algorithm can be speeded up using parallel processing. Since the AGPC algorithm needs to be fed with the knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Adaptive Generalized Predictive Control (GPC) algorithm can be speeded up using parallel processing. Since the GPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mest., Qualidade em Análises, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2013