13 resultados para Species distribution modelling

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article outlines the approaches to modeling the distribution of threatened invertebrates using data from atlases, museums and databases. Species Distribution Models (SDMs) are useful for estimating species’ ranges, identifying suitable habitats, and identifying the primary factors affecting speciesdistributions. The study tackles the strategies used to obtain SDMs without reliable absence data while exploring their applications for conservation. I examine the conservation status of Copris species and Graellsia isabelae by delimiting their populations and exploring the effectiveness of protected areas. I show that the method of pseudo‐absence selection strongly determines the model obtained, generating different model predictions along the gradient between potential and realized distributions. After assessing the effects of species’ traits and data characteristics on accuracy, I found that species are modeled more accurately when sample sizes are larger, no matter the technique used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inland sand dune systems are amongst the most threatened habitat types of Europe. Affected by severe conditions, these habitats present distinct community compositions, which makes them excellent for studying possible interactions among their integrating species and the environment. We focus on understanding the distribution and cooccurrence of the species from dune plant assemblages as a key step for the adequate protection of these habitats. Using data from an extensive survey we identified the shrub species that could be considered indicators of the different xerophytic scrub dune communities in South West Portugal. Then, we modelled the responses of these species to the environmental conditions using Ecological Niche Factor Analysis. We present some preliminary results elucidating whether using species distribution models of indicator species at a regional scale is a valid approach to predict the distribution of the different types of communities inhabiting these endangered habitats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Univerdade do Algarve, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

European-wide conservation policies are based on the identification of priority habitats. However, research on conservation biogeography often relies on the results and projections of species distribution models to assess species' vulnerability to global change. We assess whether the distribution and structure of threatened communities can be predicted by the suitability of the environmental conditions for their indicator species. We present some preliminary results elucidating if using species distribution models of indicator species at a regional scale is a valid approach to predict these endangered communities. Dune plant assemblages, affected by severe conditions, are excellent models for studying possible interactions among their integrating species and the environment. We use data from an extensive survey of xerophytic inland sand dune scrub communities from Portugal, one of the most threatened habitat types of Europe. We identify indicator shrub species of different types of communities, model their geographical response to the environment, and evaluate whether the output of these niche models are able to predict the distribution of each type of community in a different region.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis revealed the most importance factors shaping the distribution, abundance and genetic diversity of four marine foundation species. Environmental conditions, particularly sea temperatures, nutrient availability and ocean waves, played a primary role in shaping the spatial distribution and abundance of populations, acting on scales varying from tens of meters to hundreds of kilometres. Furthermore, the use of Species Distribution Models (SDMs) with biological records of occurrence and high-resolution oceanographic data, allowed predicting species distributions across time. This approach highlighted the role of climate change, particularly when extreme temperatures prevailed during glacial and interglacial periods. These results, when combined with mtDNA and microsatellite genetic variation of populations allowed inferring for the influence of past range dynamics in the genetic diversity and structure of populations. For instance, the Last Glacial Maximum produced important shifts in species ranges, leaving obvious signatures of higher genetic diversities in regions where populations persisted (i.e., refugia). However, it was found that a species’ genetic pool is shaped by regions of persistence, adjacent to others experiencing expansions and contractions. Contradicting expectations, refugia seem to play a minor role on the re(colonization) process of previously eroded populations. In addition, the available habitat area for expanding populations and the inherent mechanisms of species dispersal in occupying available habitats were also found to be fundamental in shaping the distributions of genetic diversity. However, results suggest that the high levels of genetic diversity in some populations do not rule out that they may have experienced strong genetic erosion in the past, a process here named shifting genetic baselines. Furthermore, this thesis predicted an ongoing retraction at the rear edges and extinctions of unique genetic lineages, which will impoverish the global gene pool, strongly shifting the genetic baselines in the future.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências do Mar, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2000

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding the genetic composition and mating systems of edge populations provides important insights into the environmental and demographic factors shaping speciesdistribution ranges. We analysed samples of the mangrove Avicennia marina from Vietnam, northern Philippines and Australia, with microsatellite markers. We compared genetic diversity and structure in edge (Southeast Asia, and Southern Australia) and core (North and Eastern Australia) populations, and also compared our results with previously published data from core and southern edge populations. Comparisons highlighted significantly reduced gene diversity and higher genetic structure in both margins compared to core populations, which can be attributed to very low effective population size, pollinator scarcity and high environmental pressure at distribution margins. The estimated level of inbreeding was significantly higher in northeastern populations compared to core and southern populations. This suggests that despite the high genetic load usually associated with inbreeding, inbreeding or even selfing may be advantageous in margin habitats due to the possible advantages of reproductive assurance, or local adaptation. The very high level of genetic structure and inbreeding show that populations of A. marina are functioning as independent evolutionary units more than as components of a metapopulation system connected by gene flow. The combinations of those characteristics make these peripheral populations likely to develop local adaptations and therefore to be of particular interest for conservation strategies as well as for adaptation to possible future environmental changes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

First described more that 150 years ago, the systematics of the genera Geomalacus and Letourneuxia (Arionidae, Gastropoda, Pulmonata) is still challenging. The taxonomic classification of arionid species is based on extremely labile characters such as body size or color that depends both on diet and environment, as well as age. Moreover, there is little information on the genetic diversity and population structure of the Iberian slugs that could provide extra clues to disentangle their problematic classification. The present work uses different analytical tools such as habitat suitability (Ecological Niche Modeling - ENM), cytogenetic analysis and phylogeography to establish the geographical distribution and evolutionary history of these pulmonate slugs. The potential distribution of the four Geomalacus species was modeled using ENM, which allowed the identification of new locations for G. malagensis, including a first report in Portugal. Also, it was predicted a much wider distribution for G. malagensis and G. oliveirae than previously known. Classical cytogenetic analyses were assayed with reproductive and a novel use of somatic tissues (mouth and tentacles) returning the number of chromosomes for the four Geomalacus species and L. numidica (n = 31, 2n = 62) and the respective karyotypes. G. malagensis and L. numidica present similar chromosome morphologies and karyotypic formulae, being more similar to each other than the Geomalacus among themselves. We further reconstructed the phylogeny of the genera Geomalacus and Letourneuxia using partial sequences of the mitochondrial cytochrome oxidase subunit I (COI) and the nuclear ribosomal small subunit (18S rRNA), and applied an independent evolutionary rate method, the indicator vectors correlation, to evaluate the existence of cryptic diversity within species. The five nominal species of Geomalacus and Letourneuxia comprise 14 well-supported cryptic lineages. Letourneuxia numidica was retrieved as a sister group of G. malagensis. G. oliveirae is paraphyletic with respect to G. anguiformis. According to our dating estimates, the most recent common ancestor of Geomalacus dates back to the Middle Miocene (end of the Serravallian stage). The major lineage splitting events within Geomalacus occurred during the dry periods of the Zanclean stage (5.3-3.6 million years) and some lineages were confined to more humid mountain areas of the Iberian Peninsula, which lead to a highly geographically structured mitochondrial genetic diversity. The major findings of this are the following: (1) provides updated species distribution maps for the Iberian Geomalacus expanding the known geographic distribution of the concerned species, (2) unravels the cryptic diversity within the genera Geomalacus and Letourneuxia, (3) Geomalacus oliveirae is paraphyletic with G. anguiformis and (4) Letourneuxia numidica is sister group of G. malagensis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências do Mar ( Processos de Ecossistemas Marinhos), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2012

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We studied the genetic structure of the sea cucumber Holothuria (Roweothuria) polii (Delle Chiaje 1823) by analysing the mitochondrial DNA variation in two fragments of cytochrome oxidase I (COI) and 16S genes. Individuals were collected in seven locations along the Mediterranean Sea, which cover a wide range of the species distribution. We found high haplotype diversity for COI and moderate diversity for 16S, and low nucleotide diversity for both genes. Our results for the COI gene showed many recent and exclusive haplotypes with few mutational changes, suggesting recent or ongoing population expansion. The Western and Eastern Mediterranean populations exhibited slight but significant genetic differentiation (COI gene) with higher genetic diversity in the East. The most ancient haplotype was not present in the westernmost sampling location (SE Spain). The oldest expansion time was observed in Turkey, corresponding to mid-Pleistocene. Turkey had also the highest genetic diversity (number of total and exclusive haplotypes, polymorphisms, haplotype and nucleotide diversity). This suggests that this region could be the origin of the subsequent colonizations through the Mediterranean Sea, a hypothesis that should be assessed with nuclear markers in future research.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Dependence of some species on landscape structure has been proved in numerous studies. So far, however, little progress has been made in the integration of landscape metrics in the prediction of species associated with coastal features. Specific landscape metrics were tested as predictors of coastal shape using three coastal features of the Iberian Peninsula (beaches, capes and gulfs) at different scales. We used the landscape metrics in combination with environmental variables to model the niche and find suitable habitats for a seagrass species (Cymodocea nodosa) throughout its entire range of distribution. Landscape metrics able to capture variation in the coastline enhanced significantly the accuracy of the models, despite the limitations caused by the scale of the study. We provided the first global model of the factors that can be shaping the environmental niche and distribution of C. nodosa throughout its range. Sea surface temperature and salinity were the most relevant variables. We identified areas that seem unsuitable for C. nodosa as well as those suitable habitats not occupied by the species. We also present some preliminary results of testing historical biogeographical hypotheses derived from distribution predictions under Last Glacial Maximum conditions and genetic diversity data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modelling species distributions with presence data from atlases, museum collections and databases is challenging. In this paper, we compare seven procedures to generate pseudoabsence data, which in turn are used to generate GLM-logistic regressed models when reliable absence data are not available. We use pseudo-absences selected randomly or by means of presence-only methods (ENFA and MDE) to model the distribution of a threatened endemic Iberian moth species (Graellsia isabelae). The results show that the pseudo-absence selection method greatly influences the percentage of explained variability, the scores of the accuracy measures and, most importantly, the degree of constraint in the distribution estimated. As we extract pseudo-absences from environmental regions further from the optimum established by presence data, the models generated obtain better accuracy scores, and over-prediction increases. When variables other than environmental ones influence the distribution of the species (i.e., non-equilibrium state) and precise information on absences is non-existent, the random selection of pseudo-absences or their selection from environmental localities similar to those of species presence data generates the most constrained predictive distribution maps, because pseudo-absences can be located within environmentally suitable areas. This study showsthat ifwe do not have reliable absence data, the method of pseudo-absence selection strongly conditions the obtained model, generating different model predictions in the gradient between potential and realized distributions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação de mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015