5 resultados para Positioning Architecture
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Tese de dout., Engenharia Electrónica e de Computadores, Faculdade de Ciência e Tecnologia, Universidade do Algarve, 2007
Resumo:
In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.
Resumo:
In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.
Resumo:
This paper discusses the role of enterprise architecture representation, in the context of ERP (Enterprise Resource Planning) information systems, as an instrument for an organization to reflect on itself and develop its business strategies and respective alignment with Information Systems. The paper proposes a representation model of enterprise architecture, as a tool for recommending good practices, and it emerges from a case study undertaken in the context of and investigation on advantages and limitations of ERP systems in the hospitality industry. The proposed approach is also inspired on other academic or market propositions suitable for the objectives of the investigation. It consists on a set of items representing the steps that must be taken by top managers and IS managers.
Resumo:
This paper is on the implementation of a dual axis positioning system controller. The system was designed to be used for space-dependent ultrasound signal acquisition problems, such as pressure field mapping. The work developed can be grouped in two main subjects: hardware and software. Each axis includes one stepper motor connected to a driver circuit, which is then connected to a processing unit. The graphical user interface is simple and clear for the user. The system resolution was computed as 127 mu m with an accuracy of 2.44 mu m. Although the target application is ultrasound signal acquisition, the controller can be applied to other devices that has up to four stepper motors. The application was developed as an open source software, thus it can be used or changed to fit different purposes.