9 resultados para Command and control systems.
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
The IFAC International Conference on Intelligent Control Systems and Signal Processing (ICONS 2003) was organized under the auspices of the recently founded IFAC Technical Committee on Cognition and Control, and it was the first IFAC event specifically devoted to this theme. Recognizing the importance of soft-computing techniques for fields covered by other IFAC Technical Committees, ICONS 2003 was a multi-track Conference, co-sponsored by four additional Technical Committees: Computers for Control, Optimal Control, Control in Agriculture, and Modelling, Identification and Signal Processing. The Portuguese Society for Automatic Control (APCA) hosted ICONS 2003, which was held at the University of Algarve, Faro, Portugal.
Resumo:
In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.
Resumo:
The aim of this chapter is to introduce background concepts in nonlinear systems identification and control with artificial neural networks. As this chapter is just an overview, with a limited page space, only the basic ideas will be explained here. The reader is encouraged, for a more detailed explanation of a specific topic of interest, to consult the references given throughout the text. Additionally, as general books in the field of neural networks, the books by Haykin [1] and Principe et al. [2] are suggested. Regarding nonlinear systems identification, covering both classical and neural and neuro-fuzzy methodologies, Reference 3 is recommended. References 4 and 5 should be used in the context of B-spline networks.
Resumo:
Multilayer perceptrons (MLPs) (1) are the most common artificial neural networks employed in a large field of applications. In control and signal processing applications, MLPs are mainly used as nonlinear mapping approximators. The most common training algorithm used with MLPs is the error back-propagation (BP) alg. (1).
Resumo:
Novel method of controller (PID) autotuning, involving neural networks and genetic algorithms: to employ neural networks to map the identification measures and controller parameters to objective functions, adapt these models on-line; to employ the genetic algorithm to perform on-line minimization.
Resumo:
Computer vision for realtime applications requires tremendous computational power because all images must be processed from the first to the last pixel. Ac tive vision by probing specific objects on the basis of already acquired context may lead to a significant reduction of processing. This idea is based on a few concepts from our visual cortex (Rensink, Visual Cogn. 7, 17-42, 2000): (1) our physical surround can be seen as memory, i.e. there is no need to construct detailed and complete maps, (2) the bandwidth of the what and where systems is limited, i.e. only one object can be probed at any time, and (3) bottom-up, low-level feature extraction is complemented by top-down hypothesis testing, i.e. there is a rapid convergence of activities in dendritic/axonal connections.
Resumo:
In modern measurement and control systems, the available time and resources are often not only limited, but could change during the operation of the system. In these cases, the so-called anytime algorithms could be used advantageously. While diflerent soft computing methods are wide-spreadly used in system modeling, their usability in these cases are limited.
Resumo:
One of the predictions of the ‘challenge hypothesis’ (Wingfield et al., 1990) is that androgen patterns during the breeding season should vary among species according to the parenting and mating system. Here we assess this prediction of the challenge hypothesis both at the intra- and at the inter-specific level. To test the hypothesis at the inter-specific level, a literature survey on published androgen pat- terns from teleost fish with different mating systems was carried out. The results confirm the predicted effect of mating system on andro- gen levels. To test the hypothesis at an intra-specific level, a species with flexible reproductive strategies (i.e. monogamy vs. polygyny), the Saint Peter’s fish was studied. Polygynous males had higher 11- ketotestosterone levels. However, males implanted with methyl-tes- tosterone did not became polygynous and the variation of the ten- dency to desert their pair mates was better explained by the repro- ductive state of the female partner. This result stresses the point that the effects of behaviour on hormones cannot be considered without respect to the social context.
Resumo:
The interest in cellulose dissolution and regeneration is old but this topic has recently attracted strongly renewed attention. This is reflected in both applications- earlier and novel- and scientific controversies. This special issue attempts to connect a renewed fundamental understanding of molecular aspects with practical systems for dissolution and regeneration.