4 resultados para mKdV-Liouville
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
In this paper we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator $\Delta_+^{(\alpha,\beta,\gamma)}:= D_{x_0^+}^{1+\alpha} +D_{y_0^+}^{1+\beta} +D_{z_0^+}^{1+\gamma},$ where $(\alpha, \beta, \gamma) \in \,]0,1]^3$, and the fractional derivatives $D_{x_0^+}^{1+\alpha}$, $D_{y_0^+}^{1+\beta}$, $D_{z_0^+}^{1+\gamma}$ are in the Riemann-Liouville sense. Applying operational techniques via two-dimensional Laplace transform we describe a complete family of eigenfunctions and fundamental solutions of the operator $\Delta_+^{(\alpha,\beta,\gamma)}$ in classes of functions admitting a summable fractional derivative. Making use of the Mittag-Leffler function, a symbolic operational form of the solutions is presented. From the obtained family of fundamental solutions we deduce a family of fundamental solutions of the fractional Dirac operator, which factorizes the fractional Laplace operator. We apply also the method of separation of variables to obtain eigenfunctions and fundamental solutions.
Resumo:
Nesta tese de doutoramento apresentamos um cálculo das variações fraccional generalizado. Consideramos problemas variacionais com derivadas e integrais fraccionais generalizados e estudamo-los usando métodos directos e indirectos. Em particular, obtemos condições necessárias de optimalidade de Euler-Lagrange para o problema fundamental e isoperimétrico, condições de transversalidade e teoremas de Noether. Demonstramos a existência de soluções, num espaço de funções apropriado, sob condições do tipo de Tonelli. Terminamos mostrando a existência de valores próprios, e correspondentes funções próprias ortogonais, para problemas de Sturm- Liouville.
Resumo:
Esta dissertação descreve o processo de integração dos matemáticos portugueses na comunidade matemática internacional no final do século XIX e início do século XX, focando-se na vida e obra do matemático Francisco Gomes Teixeira (1851-1933). Tenciona a ser mais um contributo para o reconhecimento nacional e internacional do matemático Gomes Teixeira analisando a sua obra como matemático e organizador científico em Portugal através de fontes, parcialmente ainda não conhecidas. Para esse efeito analisou-se a evolução histórica que ocorreu no mundo científico daquela época, em particular a formação da comunidade matemática através de iniciativas individuais ou coletivas, muitas vezes acompanhadas pela fundação de revistas e elaboração de manuais que contribuíram para a internacionalização e, de certa forma, para uma estandardização do estudo universitário básico. Em particular foi estudada a situação em Portugal, onde o papel de liderança foi assumido por Gomes Teixeira. Mostra-se como Gomes Teixeira, graças ao seu trabalho, ao seu talento como matemático e à sua atividade como organizador académico, conseguiu reduzir significativamente o isolamento científico de Portugal na área da matemática. Estudou-se em extensão a fundação de revistas científicas em diferentes países, acompanhando a sua evolução desde de revistas nacionais até revistas internacionais. Focando-nos no Jornal de Sciencias Matemáticas e Astronómicas, fundado em 1877 por Gomes Teixeira (mais tarde conhecido internacionalmente como Teixeira’s Journal), acompanhamos detalhadamente a sua transformação de uma revista nacional numa revista internacional, sendo esta transformação comum naquela época à maioria de revistas científicas importantes de outros países como, por exemplo, no caso do Jornal de Crelle, do Jornal de Liouville, ou outros. Estudou-se igualmente o reconhecimento a nível internacional, através de referências estrangeiras, da abordagem original de Gomes Teixeira à Análise Infinitesimal patente nos seus manuais. O interesse de Gomes Teixeira pela teoria das funções analíticas e pelos seus diferentes desenvolvimentos em série manifestou-se no grande número de artigos publicados sobre este tema e encontrou reconhecimento justo pela designação de um teorema que completa resultados de Lagrange e de Laurent como Teorema de Teixeira. Na sua análise do mérito científico de Gomes Teixeira esta dissertação restringiu-se conscientemente nesta área da Análise Matemática, uma vez que um estudo abrangente de toda a obra ultrapassasse o nosso objetivo. Foi também discutido o intenso intercâmbio científico levado a cabo por Gomes Teixeira através de correspondência e troca de publicações ou permuta de revistas com os matemáticos de diferentes países. Esta análise permitiu verificar um aumento da popularidade dos matemáticos portugueses através do incremento do número de artigos publicados no estrangeiro durante quase 30 anos. Uma fonte imprescindível nesta análise foi o Jahrbuch über die Fortschritte der Mathematik, cujas referências (em geral na língua alemã e por isso até agora quase nunca usadas na literatura Portuguesa) documentaram as publicações em quase todas as revistas matemáticas durante os anos da sua existência entre 1868 e 1942. Descreve-se a colaboração de Gomes Teixeira com diferentes organizações internacionais e documenta-se o apreço internacional por parte do mundo académico. Novos documentos traçam o processo de eleição como membro da Academia das Ciências Alemã Leopoldina, sob proposta de Georg Cantor e outros matemáticos alemães. Finalmente, incluí-se uma breve descrição das atividades levadas a cabo na Rússia, em Espanha e na Grécia em prol do processo de internacionalização da comunidade matemática europeia tendo em vista uma melhor contextualização do contributo de Gomes Teixeira para a integração de Portugal neste processo.
Resumo:
In this paper we generalize radial and standard Clifford-Hermite polynomials to the new framework of fractional Clifford analysis with respect to the Riemann-Liouville derivative in a symbolic way. As main consequence of this approach, one does not require an a priori integration theory. Basic properties such as orthogonality relations, differential equations, and recursion formulas, are proven.