2 resultados para Elliptic systems
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
We study the existence of solutions of quasilinear elliptic systems involving $N$ equations and a measure on the right hand side, with the form $$\left\{\begin{array}{ll} -\sum_{i=1}^n \frac{\partial}{\partial x_i}\left(\sum\limits_{\beta=1}^{N}\sum\limits_{j=1}^{n}% a_{i,j}^{\alpha,\beta}\left( x,u\right)\frac{\partial}{\partial x_j}u^\beta\right)=\mu^\alpha& \mbox{ in }\Omega ,\\ u=0 & \mbox{ on }\partial\Omega, \end{array}\right.$$ where $\alpha\in\{1,\dots,N\}$ is the equation index, $\Omega$ is an open bounded subset of $\mathbb{R}^{n}$, $u:\Omega\rightarrow\mathbb{R}^{N}$ and $\mu$ is a finite Randon measure on $\mathbb{R}^{n}$ with values into $\mathbb{R}^{N}$. Existence of a solution is proved for two different sets of assumptions on $A$. Examples are provided that satisfy our conditions, but do not satisfy conditions required on previous works on this matter.
Resumo:
In this thesis, we study the existence and multiplicity of solutions of the following class of Schr odinger-Poisson systems: u + u + l(x) u = (x; u) in R3; = l(x)u2 in R3; where l 2 L2(R3) or l 2 L1(R3). And we consider that the nonlinearity satis es the following three kinds of cases: (i) a subcritical exponent with (x; u) = k(x)jujp 2u + h(x)u (4 p < 2 ) under an inde nite case; (ii) a general inde nite nonlinearity with (x; u) = k(x)g(u) + h(x)u; (iii) a critical growth exponent with (x; u) = k(x)juj2 2u + h(x)jujq 2u (2 q < 2 ). It is worth mentioning that the thesis contains three main innovations except overcoming several di culties, which are generated by the systems themselves. First, as an unknown referee said in his report, we are the rst authors concerning the existence of multiple positive solutions for Schr odinger- Poisson systems with an inde nite nonlinearity. Second, we nd an interesting phenomenon in Chapter 2 and Chapter 3 that we do not need the condition R R3 k(x)ep 1dx < 0 with an inde nite noncoercive case, where e1 is the rst eigenfunction of +id in H1(R3) with weight function h. A similar condition has been shown to be a su cient and necessary condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity for a bounded domain (see e.g. Alama-Tarantello, Calc. Var. PDE 1 (1993), 439{475), or to be a su cient condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity in RN (see e.g. Costa-Tehrani, Calc. Var. PDE 13 (2001), 159{189). Moreover, the process used in this case can be applied to study other aspects of the Schr odinger-Poisson systems and it gives a way to study the Kirchho system and quasilinear Schr odinger system. Finally, to get sign changing solutions in Chapter 5, we follow the spirit of Hirano-Shioji, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 333, but the procedure is simpler than that they have proposed in their paper.