15 resultados para Elliptic Variational Inequatilies
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Esta dissertação estuda em detalhe três problemas elípticos: (I) uma classe de equações que envolve o operador Laplaciano, um termo singular e nãolinearidade com o exponente crítico de Sobolev, (II) uma classe de equações com singularidade dupla, o expoente crítico de Hardy-Sobolev e um termo côncavo e (III) uma classe de equações em forma divergente, que envolve um termo singular, um operador do tipo Leray-Lions, e uma função definida nos espaços de Lorentz. As não-linearidades consideradas nos problemas (I) e (II), apresentam dificuldades adicionais, tais como uma singularidade forte no ponto zero (de modo que um "blow-up" pode ocorrer) e a falta de compacidade, devido à presença do exponente crítico de Sobolev (problema (I)) e Hardy-Sobolev (problema (II)). Pela singularidade existente no problema (III), a definição padrão de solução fraca pode não fazer sentido, por isso, é introduzida uma noção especial de solução fraca em subconjuntos abertos do domínio. Métodos variacionais e técnicas da Teoria de Pontos Críticos são usados para provar a existência de soluções nos dois primeiros problemas. No problema (I), são usadas uma combinação adequada de técnicas de Nehari, o princípio variacional de Ekeland, métodos de minimax, um argumento de translação e estimativas integrais do nível de energia. Neste caso, demonstramos a existência de (pelo menos) quatro soluções não triviais onde pelo menos uma delas muda de sinal. No problema (II), usando o método de concentração de compacidade e o teorema de passagem de montanha, demostramos a existência de pelo menos duas soluções positivas e pelo menos um par de soluções com mudança de sinal. A abordagem do problema (III) combina um resultado de surjectividade para operadores monótonos, coercivos e radialmente contínuos com propriedades especiais do operador de tipo Leray- Lions. Demonstramos assim a existência de pelo menos, uma solução no espaço de Lorentz e obtemos uma estimativa para esta solução.
Resumo:
In this thesis, we study the existence and multiplicity of solutions of the following class of Schr odinger-Poisson systems: u + u + l(x) u = (x; u) in R3; = l(x)u2 in R3; where l 2 L2(R3) or l 2 L1(R3). And we consider that the nonlinearity satis es the following three kinds of cases: (i) a subcritical exponent with (x; u) = k(x)jujp 2u + h(x)u (4 p < 2 ) under an inde nite case; (ii) a general inde nite nonlinearity with (x; u) = k(x)g(u) + h(x)u; (iii) a critical growth exponent with (x; u) = k(x)juj2 2u + h(x)jujq 2u (2 q < 2 ). It is worth mentioning that the thesis contains three main innovations except overcoming several di culties, which are generated by the systems themselves. First, as an unknown referee said in his report, we are the rst authors concerning the existence of multiple positive solutions for Schr odinger- Poisson systems with an inde nite nonlinearity. Second, we nd an interesting phenomenon in Chapter 2 and Chapter 3 that we do not need the condition R R3 k(x)ep 1dx < 0 with an inde nite noncoercive case, where e1 is the rst eigenfunction of +id in H1(R3) with weight function h. A similar condition has been shown to be a su cient and necessary condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity for a bounded domain (see e.g. Alama-Tarantello, Calc. Var. PDE 1 (1993), 439{475), or to be a su cient condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity in RN (see e.g. Costa-Tehrani, Calc. Var. PDE 13 (2001), 159{189). Moreover, the process used in this case can be applied to study other aspects of the Schr odinger-Poisson systems and it gives a way to study the Kirchho system and quasilinear Schr odinger system. Finally, to get sign changing solutions in Chapter 5, we follow the spirit of Hirano-Shioji, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 333, but the procedure is simpler than that they have proposed in their paper.
Resumo:
We study the existence of solutions of quasilinear elliptic systems involving $N$ equations and a measure on the right hand side, with the form $$\left\{\begin{array}{ll} -\sum_{i=1}^n \frac{\partial}{\partial x_i}\left(\sum\limits_{\beta=1}^{N}\sum\limits_{j=1}^{n}% a_{i,j}^{\alpha,\beta}\left( x,u\right)\frac{\partial}{\partial x_j}u^\beta\right)=\mu^\alpha& \mbox{ in }\Omega ,\\ u=0 & \mbox{ on }\partial\Omega, \end{array}\right.$$ where $\alpha\in\{1,\dots,N\}$ is the equation index, $\Omega$ is an open bounded subset of $\mathbb{R}^{n}$, $u:\Omega\rightarrow\mathbb{R}^{N}$ and $\mu$ is a finite Randon measure on $\mathbb{R}^{n}$ with values into $\mathbb{R}^{N}$. Existence of a solution is proved for two different sets of assumptions on $A$. Examples are provided that satisfy our conditions, but do not satisfy conditions required on previous works on this matter.
Resumo:
The main goal of this paper is to extend the generalized variational problem of Herglotz type to the more general context of the Euclidean sphere S^n. Motivated by classical results on Euclidean spaces, we derive the generalized Euler-Lagrange equation for the corresponding variational problem defined on the Riemannian manifold S^n. Moreover, the problem is formulated from an optimal control point of view and it is proved that the Euler-Lagrange equation can be obtained from the Hamiltonian equations. It is also highlighted the geodesic problem on spheres as a particular case of the generalized Herglotz problem.
Resumo:
We consider a second-order variational problem depending on the covariant acceleration, which is related to the notion of Riemannian cubic polynomials. This problem and the corresponding optimal control problem are described in the context of higher order tangent bundles using geometric tools. The main tool, a presymplectic variant of Pontryagin’s maximum principle, allows us to study the dynamics of the control problem.
Resumo:
The Herglotz problem is a generalization of the fundamental problem of the calculus of variations. In this paper, we consider a class of non-differentiable functions, where the dynamics is described by a scale derivative. Necessary conditions are derived to determine the optimal solution for the problem. Some other problems are considered, like transversality conditions, the multi-dimensional case, higher-order derivatives and for several independent variables.
Resumo:
The aim of this paper is to exhibit a necessary and sufficient condition of optimality for functionals depending on fractional integrals and derivatives, on indefinite integrals and on presence of time delay. We exemplify with one example, where we nd analytically the minimizer.
Resumo:
We obtain a generalized Euler–Lagrange differential equation and transversality optimality conditions for Herglotz-type higher-order variational problems. Illustrative examples of the new results are given.
Resumo:
Estudamos problemas do cálculo das variações e controlo óptimo no contexto das escalas temporais. Especificamente, obtemos condições necessárias de optimalidade do tipo de Euler–Lagrange tanto para lagrangianos dependendo de derivadas delta de ordem superior como para problemas isoperimétricos. Desenvolvemos também alguns métodos directos que permitem resolver determinadas classes de problemas variacionais através de desigualdades em escalas temporais. No último capítulo apresentamos operadores de diferença fraccionários e propomos um novo cálculo das variações fraccionário em tempo discreto. Obtemos as correspondentes condições necessárias de Euler– Lagrange e Legendre, ilustrando depois a teoria com alguns exemplos.
Resumo:
Esta dissertação estuda essencialmente dois problemas: (A) uma classe de equações unidimensionais de reacção-difusão-convecção em meios não uniformes (dependentes do espaço), e (B) um problema elíptico não-linear e paramétrico ligado a fenómenos de capilaridade. A Análise de Perturbação Singular e a dinâmica de Hamilton-Jacobi são utilizadas na obtenção de expressões assimptóticas para a solução (com comportamento de frente) e para a sua velocidade de propagação. Os seguintes três métodos de decomposição, Adomian Decomposition Method (ADM), Decomposition Method based on Infinite Products (DIP), e New Iterative Method (NIM), são apresentados e brevemente comparados. Adicionalmente, condições suficientes para a convergência da solução em série, obtida pelo ADM, e uma aplicação a um problema da Telecomunicações por Fibras Ópticas, envolvendo EDOs não-lineares designadas equações de Raman, são discutidas. Um ponto de vista mais abrangente que unifica os métodos de decomposição referidos é também apresentado. Para subclasses desta EDP são obtidas soluções numa forma explícita, para diferentes tipos de dados e usando uma variante do método de simetrias de Bluman-Cole. Usando Teoria de Pontos Críticos (o teorema usualmente designado mountain pass) e técnicas de truncatura, prova-se a existência de duas soluções não triviais (uma positiva e uma negativa) para o problema elíptico não-linear e paramétrico (B). A existência de uma terceira solução não trivial é demonstrada usando Grupos Críticos e Teoria de Morse.
Resumo:
Apresenta-se uma avaliação de vários métodos de downscaling dinâmico. Os métodos utilizados vão desde o método clássico de aninhar um modelo regional nos resultados de um modelo global, neste caso as reanálises do ECMWF, a métodos propostos mais recentemente, que consistem em utilizar métodos de relaxamento Newtoniano de forma a fazer tender os resultados do modelo regional aos pontos das reanálises que se encontram dentro do domínio deste. O método que apresenta melhores resultados envolve a utilização de um sistema variacional de assimilação de dados de forma a incorporar dados de observações com resultados do modelo regional. A climatologia de uma simulação de 5 anos usando esse método é testada contra observações existentes sobre Portugal Continental e sobre o oceano na área da Plataforma Continental Portuguesa, o que permite concluir que o método desenvolvido é apropriado para reconstrução climática de alta resolução para Portugal Continental.
Resumo:
Generalizamos o cálculo Hahn variacional para problemas do cálculo das variações que envolvem derivadas de ordem superior. Estudamos o cálculo quântico simétrico, nomeadamente o cálculo quântico alpha,beta-simétrico, q-simétrico e Hahn-simétrico. Introduzimos o cálculo quântico simétrico variacional e deduzimos equações do tipo Euler-Lagrange para o cálculo q-simétrico e Hahn simétrico. Definimos a derivada simétrica em escalas temporais e deduzimos algumas das suas propriedades. Finalmente, introduzimos e estudamos o integral diamond que generaliza o integral diamond-alpha das escalas temporais.
Resumo:
Esta tese considera a transmissão de conceitos matemáticos para Portugal no século XIX, particularmente no campo dos Integrais Elípticos e das Funções Elípticas, tal como foi realizado no trabalho de António Zeferino Cândido. Depois de uma introdução histórica geral ao assunto no capítulo 1, o capítulo 2 estuda a vida de António Zeferino Cândido da Piedade. Ele foi, talvez, o primeiro matemático português a publicar uma tese sobre este assunto. A parte principal, isto é, o capítulo 3, é dedicada à análise do seu trabalho “Integraes e Funcções Ellipticas”. Mostra detalhes da sua abordagem baseada, não só, no livro dos autores Franceses Briot e Bouquet, mas também do autor alemão Schloemilch, o que reflecte as mudanças que ocorreram naquela época na liderança matemática na Europa.
Resumo:
The fractional calculus of variations and fractional optimal control are generalizations of the corresponding classical theories, that allow problem modeling and formulations with arbitrary order derivatives and integrals. Because of the lack of analytic methods to solve such fractional problems, numerical techniques are developed. Here, we mainly investigate the approximation of fractional operators by means of series of integer-order derivatives and generalized finite differences. We give upper bounds for the error of proposed approximations and study their efficiency. Direct and indirect methods in solving fractional variational problems are studied in detail. Furthermore, optimality conditions are discussed for different types of unconstrained and constrained variational problems and for fractional optimal control problems. The introduced numerical methods are employed to solve some illustrative examples.
Resumo:
Nesta tese de doutoramento apresentamos um cálculo das variações fraccional generalizado. Consideramos problemas variacionais com derivadas e integrais fraccionais generalizados e estudamo-los usando métodos directos e indirectos. Em particular, obtemos condições necessárias de optimalidade de Euler-Lagrange para o problema fundamental e isoperimétrico, condições de transversalidade e teoremas de Noether. Demonstramos a existência de soluções, num espaço de funções apropriado, sob condições do tipo de Tonelli. Terminamos mostrando a existência de valores próprios, e correspondentes funções próprias ortogonais, para problemas de Sturm- Liouville.