3 resultados para CAP-13HG
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Atendendo à produção de epóxidos em larga escala e à sua importância como intermediários versáteis, muita atenção tem sido dada à epoxidação de olefinas. Destaca-se a implementação do processo industrial de epoxidação de propileno em fase líquida com tBHP, usando complexos de molibdénio como catalisadores homogéneos (Halcon-ARCO). Neste trabalho foram investigados novos complexos à base de molibdénio como catalisadores (ou precursores) para epoxidação de olefinas em fase líquida. Foi objecto de estudo a identificação das espécies activas e a estabilidade dos catalisadores através da sua separação no final das reacções catalíticas, caracterização e reutilização. Escolheu-se como reacção modelo a epoxidação do ciscicloocteno com tBHP (em decano, tBHPdec), a 55 ºC. Estendeu-se o estudo dos desempenhos catalíticos a diferentes substratos, oxidantes, solventes e métodos de aquecimento. A maior actividade catalítica foi observada para os complexos [MoO2Cl2L2] (L=ligando dialquilamida), mais estáveis e fáceis de manusear que [MoO2Cl2] e complexos análogos com L {THF, MeCN} (Cap. 2). A partir destes complexos podem-se formar in situ espécies activas intermediárias do tipo [(MoO2ClL2)2(μ-O)]. O complexo [MoO2(Lzol)], Lzol= ligando oxazolina quiral (Cap. 3), é um catalisador estável e versátil, activo para a epoxidação de diversas olefinas (selectividades elevadas para epóxidos, mas enantioselectividades baixas), desidrogenação oxidativa de álcoois e sulfoxidação de sulfuretos. O catalisador foi também reciclado eficientemente, usando um líquido iónico (LI). O complexo iónico [MoO2Cl{HC(3,5-Me2pz)3}]BF4 (Cap.4) converteu-se nos complexos activos [{MoO2(HC(3,5-Me2pz)3)}2(μ-O)](BF4)2, [Mo2O3(O2)2(μ-O){HC(3,5-Me2pz)3}] e [MoO3{HC(3,5-Me2pz)3}]; quando dissolvido num LI, o catalisador foi reciclado com sucesso. A presença de água e o meio oxidante influenciaram a formação destas espécies. Os complexos [CpMo(CO)3Me] (Cap.5) e [CpMo(CO)2(η3- C3H5)] (Cap.6) originaram espécies activas similares (baseado nos testes catalíticos e nos espectros FT-IR ATR dos sólidos recuperados). Para [Cp'Mo(CO)2(η3-C3H5)], a influência do Cp' na actividade catalítica sugeriu a formação de espécies activas com este ligando. A partir dos complexos [Mo(CO)4L] formaram-se in situ catalisadores estáveis, que podem ser heterogéneos: para L=2-[3(5)-pirazolil]piridina formou-se [Mo4O12L4]; para L=[3- (2-piridil)-1-pirazolil]acetato de etilo formou-se [Mo8O24L4] (Cap.7). O uso de microondas (MO) como método de aquecimento em vez de um banho de óleo (BO) resultou no aumento da velocidade da reacção catalítica, devido ao aquecimento mais rápido da mistura reaccional (Caps. 5 e 7). A utilização da solução aquosa de tBHP em vez de tBHPdec era preferível, porque excluía o decano do sistema reaccional e mantinham-se elevados os rendimentos em epóxido (Caps. 2 e 6); optimizou-se o desempenho catalítico removendo a água das misturas reaccionais (Caps. 4 e 7). O melhor resultado para a epoxidação de limoneno foi observado para [CpMoCO3Me]: 88% de rendimento em epóxido (2 h, 55 ºC, método de aquecimento MO).
Resumo:
In this thesis, we study the existence and multiplicity of solutions of the following class of Schr odinger-Poisson systems: u + u + l(x) u = (x; u) in R3; = l(x)u2 in R3; where l 2 L2(R3) or l 2 L1(R3). And we consider that the nonlinearity satis es the following three kinds of cases: (i) a subcritical exponent with (x; u) = k(x)jujp 2u + h(x)u (4 p < 2 ) under an inde nite case; (ii) a general inde nite nonlinearity with (x; u) = k(x)g(u) + h(x)u; (iii) a critical growth exponent with (x; u) = k(x)juj2 2u + h(x)jujq 2u (2 q < 2 ). It is worth mentioning that the thesis contains three main innovations except overcoming several di culties, which are generated by the systems themselves. First, as an unknown referee said in his report, we are the rst authors concerning the existence of multiple positive solutions for Schr odinger- Poisson systems with an inde nite nonlinearity. Second, we nd an interesting phenomenon in Chapter 2 and Chapter 3 that we do not need the condition R R3 k(x)ep 1dx < 0 with an inde nite noncoercive case, where e1 is the rst eigenfunction of +id in H1(R3) with weight function h. A similar condition has been shown to be a su cient and necessary condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity for a bounded domain (see e.g. Alama-Tarantello, Calc. Var. PDE 1 (1993), 439{475), or to be a su cient condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity in RN (see e.g. Costa-Tehrani, Calc. Var. PDE 13 (2001), 159{189). Moreover, the process used in this case can be applied to study other aspects of the Schr odinger-Poisson systems and it gives a way to study the Kirchho system and quasilinear Schr odinger system. Finally, to get sign changing solutions in Chapter 5, we follow the spirit of Hirano-Shioji, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 333, but the procedure is simpler than that they have proposed in their paper.
Resumo:
A paradigm shift is taking place from using transplanting tissue and synthetic implants to a tissue engineering approach that aims to regenerate damaged tissues by combining cells from the body with highly porous scaffold biomaterials, which act as templates, guiding the growth of new tissue. The central focus of this thesis was to produce porous glass and glass-ceramic scaffolds that exhibits a bioactive and biocompatible behaviour with specific surface reactivity in synthetic physiological fluids and cell-scaffold interactions, enhanced by composition and thermal treatments applied. Understanding the sintering behaviour and the interaction between the densification and crystallization processes of glass powders was essential for assessing the ideal sintering conditions for obtaining a glass scaffolds for tissue engineering applications. Our main goal was to carry out a comprehensive study of the bioactive glass sintering, identifying the powder size and sintering variables effect, for future design of sintered glass scaffolds with competent microstructures. The developed scaffolds prepared by the salt sintering method using a 3CaO.P2O5 - SiO2 - MgO glass system, with additions of Na2O with a salt, NaCl, exhibit high porosity, interconnectivity, pore size distribution and mechanical strength suitable for bone repair applications. The replacement of 6 % MgO by Na2O in the glass network allowed to tailor the dissolution rate and bioactivity of the glass scaffolds. Regarding the biological assessment, the incorporation of sodium to the composition resulted in an inibition cell response for small periods. Nevertheless it was demonstrated that for 21 days the cells response recovered and are similar for both glass compositions. The in vitro behaviour of the glass scaffolds was tested by introducing scaffolds to simulated body fluid for 21 days. Energy-dispersive Xray spectroscopy and SEM analyses proved the existence of CaP crystals for both compositions. Crystallization forming whitlockite was observed to affect the dissolution behaviour in simulated body fluid. By performing different heat treatments, it was possible to control the bioactivity and biocompatability of the glass scaffolds by means of a controlled crystallization. To recover and tune the bioactivity of the glass-ceramic with 82 % crystalline phase, different methods have been applied including functionalization using 3- aminopropyl-triethoxysilane (APTES). The glass ceramic modified surface exhibited an accelerated crystalline hydroxyapatite layer formation upon immersion in SBF after 21 days while the as prepared glass-ceramic had no detected formation of calcium phosphate up to 5 months. A sufficient mechanical support for bone tissue regeneration that biodegrade later at a tailorable rate was achievable with the glass–ceramic scaffold. Considering the biological assessment, scaffolds demonstrated an inductive effect on the proliferation of cells. The cells showed a normal morphology and high growth rate when compared to standard culture plates. This study opens up new possibilities for using 3CaO.P2O5–SiO2–MgO glass to manufacture various structures, while tailoring their bioactivity by controlling the content of the crystalline phase. Additionally, the in vitro behaviour of these structures suggests the high potential of these materials to be used in the field of tissue regeneration.