3 resultados para CAP-13HG
em CaltechTHESIS
Resumo:
This dissertation contains three essays on mechanism design. The common goal of these essays is to assist in the solution of different resource allocation problems where asymmetric information creates obstacles to the efficient allocation of resources. In each essay, we present a mechanism that satisfactorily solves the resource allocation problem and study some of its properties. In our first essay, ”Combinatorial Assignment under Dichotomous Preferences”, we present a class of problems akin to time scheduling without a pre-existing time grid, and propose a mechanism that is efficient, strategy-proof and envy-free. Our second essay, ”Monitoring Costs and the Management of Common-Pool Resources”, studies what can happen to an existing mechanism — the individual tradable quotas (ITQ) mechanism, also known as the cap-and-trade mechanism — when quota enforcement is imperfect and costly. Our third essay, ”Vessel Buyback”, coauthored with John O. Ledyard, presents an auction design that can be used to buy back excess capital in overcapitalized industries.
Resumo:
The access of 1.2-40 MeV protons and 0.4-1.0 MeV electrons from interplanetary space to the polar cap regions has been investigated with an experiment on board a low altitude, polar orbiting satellite (OG0-4).
A total of 333 quiet time observations of the electron polar cap boundary give a mapping of the boundary between open and closed geomagnetic field lines which is an order of magnitude more comprehensive than previously available.
Persistent features (north/south asymmetries) in the polar cap proton flux, which are established as normal during solar proton events, are shown to be associated with different flux levels on open geomagnetic field lines than on closed field lines. The pole in which these persistent features are observed is strongly correlated to the sector structure of the interplanetary magnetic field and uncorrelated to the north/south component of this field. The features were observed in the north (south) pole during a negative (positive) sector 91% of the time, while the solar field had a southward component only 54% of the time. In addition, changes in the north/south component have no observable effect on the persistent features.
Observations of events associated with co-rotating regions of enhanced proton flux in interplanetary space are used to establish the characteristics of the 1.2 - 40 MeV proton access windows: the access window for low polar latitudes is near the earth, that for one high polar latitude region is ~250 R⊕ behind the earth, while that for the other high polar latitude region is ~1750 R⊕ behind the earth. All of the access windows are of approximately the same extent (~120 R⊕). The following phenomena contribute to persistent polar cap features: limited interplanetary regions of enhanced flux propagating past the earth, radial gradients in the interplanetary flux, and anisotropies in the interplanetary flux.
These results are compared to the particle access predictions of the distant geomagnetic tail configurations proposed by Michel and Dessler, Dungey, and Frank. The data are consistent with neither the model of Michel and Dessler nor that of Dungey. The model of Frank can yield a consistent access window configuration provided the following constraints are satisfied: the merging rate for open field lines at one polar neutral point must be ~5 times that at the other polar neutral point, related to the solar magnetic field configuration in a consistent fashion, the migration time for open field lines to move across the polar cap region must be the same in both poles, and the open field line merging rate at one of the polar neutral points must be at least as large as that required for almost all the open field lines to have merged in 0 (one hour). The possibility of satisfying these constraints is investigated in some detail.
The role played by interplanetary anisotropies in the observation of persistent polar cap features is discussed. Special emphasis is given to the problem of non-adiabatic particle entry through regions where the magnetic field is changing direction. The degree to which such particle entry can be assumed to be nearly adiabatic is related to the particle rigidity, the angle through which the field turns, and the rate at which the field changes direction; this relationship is established for the case of polar cap observations.
Resumo:
My focus in this thesis is to contribute to a more thorough understanding of the mechanics of ice and deformable glacier beds. Glaciers flow under their own weight through a combination of deformation within the ice column and basal slip, which involves both sliding along and deformation within the bed. Deformable beds, which are made up of unfrozen sediment, are prevalent in nature and are often the primary contributors to ice flow wherever they are found. Their granular nature imbues them with unique mechanical properties that depend on the granular structure and hydrological properties of the bed. Despite their importance for understanding glacier flow and the response of glaciers to changing climate, the mechanics of deformable glacier beds are not well understood.
Our general approach to understanding the mechanics of bed deformation and their effect on glacier flow is to acquire synoptic observations of ice surface velocities and their changes over time and to use those observations to infer the mechanical properties of the bed. We focus on areas where changes in ice flow over time are due to known environmental forcings and where the processes of interest are largely isolated from other effects. To make this approach viable, we further develop observational methods that involve the use of mapping radar systems. Chapters 2 and 5 focus largely on the development of these methods and analysis of results from ice caps in central Iceland and an ice stream in West Antarctica. In Chapter 3, we use these observations to constrain numerical ice flow models in order to study the mechanics of the bed and the ice itself. We show that the bed in an Iceland ice cap deforms plastically and we derive an original mechanistic model of ice flow over plastically deforming beds that incorporates changes in bed strength caused by meltwater flux from the surface. Expanding on this work in Chapter 4, we develop a more detailed mechanistic model for till-covered beds that helps explain the mechanisms that cause some glaciers to surge quasi-periodically. In Antarctica, we observe and analyze the mechanisms that allow ocean tidal variations to modulate ice stream flow tens of kilometers inland. We find that the ice stream margins are significantly weakened immediately upstream of the area where ice begins to float and that this weakening likely allows changes in stress over the floating ice to propagate through the ice column.