37 resultados para Microscopia especular


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is about the combination of functional ferroelectric oxides with Multiwall Carbon Nanotubes for microelectronic applications, as for example potential 3 Dimensional (3D) Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Miniaturized electronics are ubiquitous now. The drive to downsize electronics has been spurred by needs of more performance into smaller packages at lower costs. But the trend of electronics miniaturization challenges board assembly materials, processes, and reliability. Semiconductor device and integrated circuit technology, coupled with its associated electronic packaging, forms the backbone of high-performance miniaturized electronic systems. However, as size decreases and functionalization increases in the modern electronics further size reduction is getting difficult; below a size limit the signal reliability and device performance deteriorate. Hence miniaturization of siliconbased electronics has limitations. On this background the Road Map for Semiconductor Industry (ITRS) suggests since 2011 alternative technologies, designated as More than Moore; being one of them based on carbon (carbon nanotubes (CNTs) and graphene) [1]. CNTs with their unique performance and three dimensionality at the nano-scale have been regarded as promising elements for miniaturized electronics [2]. CNTs are tubular in geometry and possess a unique set of properties, including ballistic electron transportation and a huge current caring capacity, which make them of great interest for future microelectronics [2]. Indeed CNTs might have a key role in the miniaturization of Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Moving from a traditional two dimensional (2D) design (as is the case of thin films) to a 3D structure (based on a tridimensional arrangement of unidimensional structures) will result in the high reliability and sensing of the signals due to the large contribution from the bottom electrode. One way to achieve this 3D design is by using CNTs. Ferroelectrics (FE) are spontaneously polarized and can have high dielectric constants and interesting pyroelectric, piezoelectric, and electrooptic properties, being a key application of FE electronic memories. However, combining CNTs with FE functional oxides is challenging. It starts with materials compatibility, since crystallization temperature of FE and oxidation temperature of CNTs may overlap. In this case low temperature processing of FE is fundamental. Within this context in this work a systematic study on the fabrication of CNTs - FE structures using low cost low temperature methods was carried out. The FE under study are comprised of lead zirconate titanate (Pb1-xZrxTiO3, PZT), barium titanate (BaTiO3, BT) and bismuth ferrite (BiFeO3, BFO). The various aspects related to the fabrication, such as effect on thermal stability of MWCNTs, FE phase formation in presence of MWCNTs and interfaces between the CNTs/FE are addressed in this work. The ferroelectric response locally measured by Piezoresponse Force Microscopy (PFM) clearly evidenced that even at low processing temperatures FE on CNTs retain its ferroelectric nature. The work started by verifying the thermal decomposition behavior under different conditions of the multiwall CNTs (MWCNTs) used in this work. It was verified that purified MWCNTs are stable up to 420 ºC in air, as no weight loss occurs under non isothermal conditions, but morphology changes were observed for isothermal conditions at 400 ºC by Raman spectroscopy and Transmission Electron Microscopy (TEM). In oxygen-rich atmosphere MWCNTs started to oxidized at 200 ºC. However in argon-rich one and under a high heating rate MWCNTs remain stable up to 1300 ºC with a minimum sublimation. The activation energy for the decomposition of MWCNTs in air was calculated to lie between 80 and 108 kJ/mol. These results are relevant for the fabrication of MWCNTs – FE structures. Indeed we demonstrate that PZT can be deposited by sol gel at low temperatures on MWCNTs. And particularly interesting we prove that MWCNTs decrease the temperature and time for formation of PZT by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs - PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNTs - PZT synthesised at 500 ºC for 1 h was proved by PFM. In the continuation of this work we developed a low cost methodology of coating MWCNTs using a hybrid sol-gel / hydrothermal method. In this case the FE used as a proof of concept was BT. BT is a well-known lead free perovskite used in many microelectronic applications. However, synthesis by solid state reaction is typically performed around 1100 to 1300 ºC what jeopardizes the combination with MWCNTs. We also illustrate the ineffectiveness of conventional hydrothermal synthesis in this process due the formation of carbonates, namely BaCO3. The grown MWCNTs - BT structures are ferroelectric and exhibit an electromechanical response (15 pm/V). These results have broad implications since this strategy can also be extended to other compounds of materials with high crystallization temperatures. In addition the coverage of MWCNTs with FE can be optimized, in this case with non covalent functionalization of the tubes, namely with sodium dodecyl sulfate (SDS). MWCNTs were used as templates to grow, in this case single phase multiferroic BFO nanorods. This work shows that the use of nitric solvent results in severe damages of the MWCNTs layers that results in the early oxidation of the tubes during the annealing treatment. It was also observed that the use of nitric solvent results in the partial filling of MWCNTs with BFO due to the low surface tension (<119 mN/m) of the nitric solution. The opening of the caps and filling of the tubes occurs simultaneously during the refluxing step. Furthermore we verified that MWCNTs have a critical role in the fabrication of monophasic BFO; i.e. the oxidation of CNTs during the annealing process causes an oxygen deficient atmosphere that restrains the formation of Bi2O3 and monophasic BFO can be obtained. The morphology of the obtained BFO nano structures indicates that MWCNTs act as template to grow 1D structure of BFO. Magnetic measurements on these BFO nanostructures revealed a week ferromagnetic hysteresis loop with a coercive field of 956 Oe at 5 K. We also exploited the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were in-situ deposited on the surface of VA-MWCNTs by RF (Radio Frequency) magnetron sputtering. For in situ deposition temperature of 400 ºC and deposition time up to 2 h, BFO films cover the VA-MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by PFM. A week ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe. Our systematic work is a significant step forward in the development of 3D memory cells; it clearly demonstrates that CNTs can be combined with FE oxides and can be used, for example, as the next 3D generation of FERAMs, not excluding however other different applications in microelectronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

K0.5Na0.5NbO3 (KNN), is the most promising lead free material for substituting lead zirconate titanate (PZT) which is still the market leader used for sensors and actuators. To make KNN a real competitor, it is necessary to understand and to improve its properties. This goal is pursued in the present work via different approaches aiming to study KNN intrinsic properties and then to identify appropriate strategies like doping and texturing for designing better KNN materials for an intended application. Hence, polycrystalline KNN ceramics (undoped, non-stoichiometric; NST and doped), high-quality KNN single crystals and textured KNN based ceramics were successfully synthesized and characterized in this work. Polycrystalline undoped, non-stoichiometric (NST) and Mn doped KNN ceramics were prepared by conventional ceramic processing. Structure, microstructure and electrical properties were measured. It was observed that the window for mono-phasic compositions was very narrow for both NST ceramics and Mn doped ceramics. For NST ceramics the variation of A/B ratio influenced the polarization (P-E) hysteresis loop and better piezoelectric and dielectric responses could be found for small stoichiometry deviations (A/B = 0.97). Regarding Mn doping, as compared to undoped KNN which showed leaky polarization (P-E) hysteresis loops, B-site Mn doped ceramics showed a well saturated, less-leaky hysteresis loop and a significant properties improvement. Impedance spectroscopy was used to assess the role of Mn and a relation between charge transport – defects and ferroelectric response in K0.5Na0.5NbO3 (KNN) and Mn doped KNN ceramics could be established. At room temperature the conduction in KNN which is associated with holes transport is suppressed by Mn doping. Hence Mn addition increases the resistivity of the ceramic, which proved to be very helpful for improving the saturation of the P-E loop. At high temperatures the conduction is dominated by the motion of ionized oxygen vacancies whose concentration increases with Mn doping. Single crystals of potassium sodium niobate (KNN) were grown by a modified high temperature flux method. A boron-modified flux was used to obtain the crystals at a relatively low temperature. XRD, EDS and ICP analysis proved the chemical and crystallographic quality of the crystals. The grown KNN crystals exhibit higher dielectric permittivity (29,100) at the tetragonal-to-cubic phase transition temperature, higher remnant polarization (19.4 μC/cm2) and piezoelectric coefficient (160 pC/N) when compared with the standard KNN ceramics. KNN single crystals domain structure was characterized for the first time by piezoforce response microscopy. It could be observed that <001> - oriented potassium sodium niobate (KNN) single crystals reveal a long range ordered domain pattern of parallel 180° domains with zig-zag 90° domains. From the comparison of KNN Single crystals to ceramics, It is argued that the presence in KNN single crystal (and absence in KNN ceramics) of such a long range order specific domain pattern that is its fingerprint accounts for the improved properties of single crystals. These results have broad implications for the expanded use of KNN materials, by establishing a relation between the domain patterns and the dielectric and ferroelectric response of single crystals and ceramics and by indicating ways of achieving maximised properties in KNN materials. Polarized Raman analysis of ferroelectric potassium sodium niobate (K0.5Na0.5)NbO3 (KNN) single crystals was performed. For the first time, an evidence is provided that supports the assignment of KNN single crystals structure to the monoclinic symmetry at room temperature. Intensities of A′, A″ and mixed A′+A″ phonons have been theoretically calculated and compared with the experimental data in dependence of crystal rotation, which allowed the precise determination of the Raman tensor coefficients for (non-leaking) modes in monoclinic KNN. In relation to the previous literature, this study clarifies that assigning monoclinic phase is more suitable than the orthorhombic one. In addition, this study is the basis for non-destructive assessments of domain distribution by Raman spectroscopy in KNN-based lead-free ferroelectrics with complex structures. Searching a deeper understanding of the electrical behaviour of both KNN single crystal and polycrystalline materials for the sake of designing optimized KNN materials, a comparative study at the level of charge transport and point defects was carried out by impedance spectroscopy. KNN single crystals showed lower conductivity than polycrystals from room temperature up to 200 ºC, but above this temperature polycrystalline KNN displays lower conductivity. The low temperature (T < 200 ºC) behaviour reflects the different processing conditions of both ceramics and single crystals, which account for less defects prone to charge transport in the case of single crystals. As temperature increases (T > 200 ºC) single crystals become more conductive than polycrystalline samples, in which grain boundaries act as barriers to charge transport. For even higher temperatures the conductivity difference between both is increased due to the contribution of ionic conduction in single crystals. Indeed the values of activation energy calculated to the high temperature range (T > 300 ºC) were 1.60 and 0.97 eV, confirming the charge transport due to ionic conduction and ionized oxygen vacancies in single crystals and polycrystalline KNN, respectively. It is suggested that single crystals with low defects content and improved electromechanical properties could be a better choice for room temperature applications, though at high temperatures less conductive ceramics may be the choice, depending on the targeted use. Aiming at engineering the properties of KNN polycrystals towards the performance of single crystals, the preparation and properties study of (001) – oriented (K0.5Na0.5)0.98Li0.02NbO3 (KNNL) ceramics obtained by templated grain growth (TGG) using KNN single crystals as templates was undertaken. The choice of KNN single crystals templates is related with their better properties and to their unique domain structure which were envisaged as a tool for templating better properties in KNN ceramics too. X-ray diffraction analysis revealed for the templated ceramics a monoclinic structure at room temperature and a Lotgering factor (f) of 40% which confirmed texture development. These textured ceramics exhibit a long range ordered domain pattern consisting of 90º and 180º domains, similar to the one observed in the single crystals. Enhanced dielectric (13017 at TC), ferroelectric (2Pr = 42.8 μC/cm2) and piezoelectric (d33 = 280 pC/N) properties are observed for textured KNNL ceramics as compared to the randomly oriented ones. This behaviour is suggested to be due to the long range ordered domain patterns observed in the textured ceramics. The obtained results as compared with the data previously reported on texture KNN based ceramics confirm that superior properties were found due to ordered repeated domain pattern. This study provides an useful approach towards properties improvement of KNN-based piezoelectric ceramics. Overall, the present results bring a significant contribution to the pool of knowledge on the properties of sodium potassium niobate materials: a relation between the domain patterns and di-, ferro-, and piezo-electric response of single crystals and ceramics was demonstrated and ways of engineering maximised properties in KNN materials, for example by texturing were established. This contribution is envisaged to have broad implications for the expanded use of KNN over the alternative lead-based materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho teve como objetivos a produção, caracterização e aplicação de microelétrodos (MEs) de diamante como sensores amperométricos e potenciométricos em sistemas de corrosão nos quais a agressividade do meio e a presença de produtos de corrosão, constituem obstáculos que podem diminuir o desempenho, ou inviabilizar a utilização, de outros tipos de sensores. Os microeléctrodos são baseados em filmes finos de diamante dopado com boro (BDD – Boron Doped Diamond) depositados sobre fios de tungsténio afiados, através do método de deposição química a partir da fase vapor, assistida por filamento quente (HFCVD – Hot Filament Chemical Vapor Deposition). A otimização das diversas etapas de fabricação dos MEs deu origem ao desenvolvimento de um novo sistema de afiamento eletroquímico para obtenção destes fios e a várias opções para a obtenção dos filmes de diamante condutor e seu isolamento com resinas para exposição apenas da ponta cilíndrica. A qualidade cristalina dos filmes de diamante foi avaliada por espectroscopia de Raman. Esta informação foi complementada com uma caracterização microestrutural dos filmes de diamante por microscopia eletrónica de varrimento (SEM), em que se fez a identificação da tipologia dos cristais como pertencendo às gamas de diamante nanocristalino ou microcristalino. Os filmes de BDD foram utilizados na sua forma não modificada, com terminações em hidrogénio e também com modificação da superfície através de tratamentos de plasma RF de CF4 e O2 indutores de terminações C-F no primeiro caso e de grupos C=O, C-O-C e C-OH no segundo, tal como determinado por XPS. A caracterização eletroquímica dos MEs não modificados revelou uma resposta voltamétrica com elevada razão sinal/ruído e baixa corrente capacitiva, numa gama de polarização quasi-ideal com extensão de 3 V a 4 V, dependente dos parâmetros de crescimento e pós-tratamentos de superfície. Estudou-se a reversibilidade de algumas reações heterogéneas com os pares redox Fe(CN)6 3-/4- e FcOH0/+ e verificou-se que a constante cinética, k0, é mais elevada em elétrodos com terminações em hidrogénio, nos quais não se procedeu a qualquer modificação da superfície. Estes MEs não modificados foram também testados na deteção de Zn2+ onde se observou, por voltametria cíclica, que a detecção da redução deste ião é linear numa escala log-log na gama de 10-5-10-2 M em 5 mM NaCl. Realizaram-se também estudos em sistemas de corrosão modelares, em que os microeléctrodos foram usados como sensores amperométricos para mapear a distribuição de oxigénio e Zn2+ sobre um par galvânico Zn-Fe, com recurso a um sistema SVET (Scanning Vibrating Electrode Technique). Foi possível detetar, com resolução lateral de 100 μm, um decréscimo da concentração de O2 junto a ambos os metais e produção de catiões de zinco no ânodo. Contudo verificou-se uma significativa deposição de zinco metálico na superfície dos ME utilizados. Os MEs com superfície modificada por plasma de CF4 foram testados como sensores de oxigénio dissolvido. A calibração dos microeléctrodos foi efetuada simultaneamente por voltametria cíclica e medição óptica através de um sensor de oxigénio comercial. Determinou-se uma sensibilidade de ~0.1422 nA/μM, com um limite de deteção de 0.63 μM. Os MEs modificados com CF4 foram também testados como sensores amperométricos com os quais se observou sensibilidade ao oxigénio dissolvido em solução, tendo sido igualmente utilizados durante a corrosão galvânica de pares Zn-Fe. Em alguns casos foi conseguida sensibilidade ao ião Zn2+ sem que o efeito da contaminação superficial com zinco metálico se fizesse sentir. Os microeléctrodos tratados em plasma de CF4 permitem uma boa deteção da distribuição de oxigénio, exibindo uma resposta mais rápida que os não tratados além de maior estabilidade de medição e durabilidade. Nos MEs em que a superfície foi modificada com plasma de O2 foi possível detetar, por cronopotenciometria a corrente nula, uma sensibilidade ao pH de ~51 mV/pH numa gama de pH 2 a pH 12. Este comportamento foi associado à contribuição determinante de grupos C-O e C=O, observados por XPS com uma razão O/C de 0,16. Estes MEs foram igualmente testados durante a corrosão galvânica do par Zn-Fe onde foi possível mapear a distribuição de pH associada ao desenvolvimento de regiões alcalinas causadas pela redução do oxigénio, acima da região catódica, e de regiões ácidas decorrentes da dissolução anódica do ânodo de zinco. Com o par galvânico imerso em 50 mM NaCl registou-se uma variação de pH aproximadamente entre 4,8 acima do ânodo de zinco a 9,3 sobre o cátodo de ferro. A utilização pioneira destes MEs como sensores de pH é uma alternativa promissora aos elétrodos baseados em membranas seletivas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and switchable polarization at room temperature. Here we study piezoelectricity and ferroelectricity in the smallest amino acid glycine, representing a broad class of non-centrosymmetric amino acids. Glycine is one of the basic and important elements in biology, as it serves as a building block for proteins. Three polymorphic forms with different physical properties are possible in glycine (α, β and γ), Of special interest for various applications are non-centrosymmetric polymorphs: β-glycine and γ-glycine. The most useful β-polymorph being ferroelectric took much less attention than the other due to its instability under ambient conditions. In this work, we could grow stable microcrystals of β-glycine by the evaporation of aqueous solution on a (111)Pt/Ti/SiO2/Si substrate as a template. The effects of the solution concentration and Pt-assisted nucleation on the crystal growth and phase evolution were characterized by X-ray diffraction analysis and Raman spectroscopy. In addition, spin-coating technique was used for the fabrication of highly aligned nano-islands of β-glycine with regular orientation of the crystallographic axes relative the underlying substrate (Pt). Further we study both as-grown and tip-induced domain structures and polarization switching in the β-glycine molecular systems by Piezoresponse Force Microscopy (PFM) and compare the results with molecular modeling and computer simulations. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of applied voltage and pulse duration. The domain shape is dictated by both internal and external polarization screening mediated by defects and topographic features. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that β-glycine is a uniaxial ferroelectric with the properties controlled by the charged domain walls which in turn can be manipulated by external bias. Besides, nonlinear optical properties of β-glycine were investigated by a second harmonic generation (SHG) method. SHG method confirmed that the 2-fold symmetry is preserved in as-grown crystals, thus reflecting the expected P21 symmetry of the β-phase. Spontaneous polarization direction is found to be parallel to the monoclinic [010] axis and directed along the crystal length. These data are confirmed by computational molecular modeling. Optical measurements revealed also relatively high values of the nonlinear optical susceptibility (50% greater than in the z-cut quartz). The potential of using stable β-glycine crystals in various applications are discussed in this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell cycle and differentiation are two highly coordinated processes during organ development. Recent studies have demonstrated that core cell cycle regulators also play cell cycle-independent functions in post-mitotic neurons, and are essential for the maintenance of neuronal homeostasis. CDC25 phosphatases are well-established CDK activators and their activity is mainly associated to proliferating tissues. The expression and activity of mammalian CDC25s has been reported in adult brains. However, their physiological relevance and the potential substrates in a non-proliferative context have never been addressed. string (stg) encodes the Drosophila CDC25 homolog. Previous studies from our group showed that stg is expressed in photoreceptors (PRs) and in lamina neurons, which are two differentiated cell types that compose the fly visual system. The aims of this work are to uncover the function of stg and to identify its potential neuronal substrates, using the Drosophila visual system as a model. To gain insight into the function of stg in a non-dividing context we used the GAL4/UAS system to promote downregulation of stg in PR-neurons, through the use of an RNAi transgene. The defects caused by stg loss-of-function were evaluated in the developing eye imaginal disc by immunofluorescence, and during adult stages by scanning electron microscopy. This genetic approach was combined with a specific proteomic method, two-dimensional difference gel electrophoresis (2D-DIGE), to identify the potential substrates in PR-cells. Our results showed that stg downregulation in PRs affects the well-patterned retina organization, inducing the loss of apical maintenance of PR-nuclei on the eye disc, and ommatidia disorganization. We also detected an abnormal accumulation of cytoskeletal proteins and a disruption of the axon structure. As a consequence, the projection of PR-axons into the lamina and medulla neuropils of the optic lobe was impaired. Upon stg downregulation, we also detected that PR-cells accumulate Cyclin B. Although the rough eye phenotype observed upon stg downregulation suggests neurodegeneration, we did not detect neuronal death during larval stages, suggesting that it likely occurs during pupal stages or during adulthood. By 2D-DIGE, we identified seven proteins which were differentially expressed upon stg downregulation, and are potential neuronal substrates of Stg. Altogether, our observations suggest that Stg phosphatase plays an essential role in the Drosophila visual system neurons, regulating several cell components and processes in order to ensure their homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os sedimentos marinhos subsuperficiais profundos são, atualmente, um ambiente ainda pouco conhecido do ponto de vista microbiológico, nomeadamente quanto aos processos metabólicos que nele têm lugar e quanto à sua possível influência nos ciclos biogeoquímicos. O acesso a amostras colhidas em sedimentos profundos, particularmente no âmbito dos programas IODP (International Ocean Discovery Program) e ECORD (European Consortium for Ocean Research Drilling) tem permitido recolher informação sobre a estrutura das comunidades de procariotas bem como sobre alguns dos fatores que regulam a sua distribuição e atividade. Este estudo teve como objetivo caracterizar a distribuição e a diversidade estrutural das comunidades de procariotas em sedimentos subsuperficiais profundos colhidos no Arco Izu-Bonin-Mariana, no mar das Filipinas, com recurso a métodos independentes de cultivo (PCR-DGGE) e à contagem de células por microscopia de epifluorescência. Os resultados apontam para a existência de comunidades de Bacteria e Archaea diversas. Os valores do índice de diversidade de Shannon-Weaver (H’) calculados com base nos perfis de DGGE (Bacteria) foram significativamente mais elevados (3,035 – 1,971) nas camadas superficiais (< 140 mafm) do que nos sedimentos (2,519 - 1,049) correspondentes a profundidades superiores entre 163 e 879 mafm. A abundância máxima (8,66 x 106 células.gps-1) foi registada à profundidade de 67 mafm e valor mínimo (2,26 x 106 células.gps-1) foi observado em amostras colhidas a 879 mafm de profundidade. Abundância e diversidade apresentaram correlação negativa com a profundidade e com o teor de sulfato. Os resultados indicam que ao longo da coluna de sedimento se estabelecem comunidades de procariotas estruturalmente diferentes e adaptadas ao ambiente geoquímico prevalecente, nomeadamente em termos dos aceitadores de eletrões disponíveis. O estudo do microbioma destas amostras representativas do ambiente sedimentar subsuperficial profundo será continuado e detalhado, com recurso a técnicas de sequenciação avançada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste trabalho estudaram-se as interfaces carboneto de silício-solução aquosa e carbono-solução aquosa, com vista a uma melhor compreensão dos processos de floculaçáo e desfloculaçáo de suspensões de cada um daqueles materiais e de suas misturas. Os pós foram caracterizados por recurso a técnicas de sedimentação, microscopia electrónica de varrimento, difracçáo de raios-X, análises térmicas, espectroscopia de infra-vermelhos e picnometria de hélio. As suspensões foram caracterizadas por técnicas de microelectroforese, sedimentação e reologia. Estudou-se a influência de algumas variáveis mais importantes do processo de enchimento por barbotina como, por exemplo, o mecanismo e o grau de estabilização das suspensões, a concentração de sólidos, a distribuição granulométrica das partículas, e o tempo de envelhecimento das suspensões, na estrutura das partículas em suspensão e nas características dos corpos conformados por enchimento por barbotina. A cinética deste processo foi estudada sob o efeito de pressão aplicada e relacionada com a estrutura das partículas em suspensão e com a microstrutura dos corpos em verde. Estudaram-se os mecanismos da segregação de tamanhos de partículas em suspensão que ocorre durante o processo de enchimento por barbotina devidos aos efeitos da gravidade e da obstrução do bolo pelas partículas finas. Discutiram-se os domínios das variáveis do processo em que cada um daqueles efeitos é dominante e propôs-se um novo modelo para o fenómeno da segregação por efeito de obstrução capaz de interpretar os resultados observados neste trabalho e os encontrados na literatura. Estabeleceram-se correlações estreitas entre as variáveis do processo de enchimento por barbotina, a microestrutura dos corpos conformados e o seu comportamento durante a etapa da secagem. Procurou ainda avaliar-se a capacidade do enchimento por barbotina para preparar materiais compósitos de carboneto de silício e carbono com características adequadas para a sinterizaçáo reactiva.