43 resultados para Fluxo óptico
Resumo:
Nos últimos anos, a Optoelectrónica tem sido estabelecida como um campo de investigação capaz de conduzir a novas soluções tecnológicas. As conquistas abundantes no campo da óptica e lasers, bem como em comunicações ópticas têm sido de grande importância e desencadearam uma série de inovações. Entre o grande número de componentes ópticos existentes, os componentes baseados em fibra óptica são principalmente relevantes devido à sua simplicidade e à elevada de transporte de dados da fibra óptica. Neste trabalho foi focado um destes componentes ópticos: as redes de difracção em fibra óptica, as quais têm propriedades ópticas de processamento únicas. Esta classe de componentes ópticos é extremamente atraente para o desenvolvimento de dispositivos de comunicações ópticas e sensores. O trabalho começou com uma análise teórica aplicada a redes em fibra e foram focados os métodos de fabricação de redes em fibra mais utilizados. A inscrição de redes em fibra também foi abordado neste trabalho, onde um sistema de inscrição automatizada foi implementada para a fibra óptica de sílica, e os resultados experimentais mostraram uma boa aproximação ao estudo de simulação. Também foi desenvolvido um sistema de inscrição de redes de Bragg em fibra óptica de plástico. Foi apresentado um estudo detalhado da modulação acústico-óptica em redes em fibra óptica de sílica e de plástico. Por meio de uma análise detalhada dos modos de excitação mecânica aplicadas ao modulador acústico-óptico, destacou-se que dois modos predominantes de excitação acústica pode ser estabelecidos na fibra óptica, dependendo da frequência acústica aplicada. Através dessa caracterização, foi possível desenvolver novas aplicações para comunicações ópticas. Estudos e implementação de diferentes dispositivos baseados em redes em fibra foram realizados, usando o efeito acústico-óptico e o processo de regeneração em fibra óptica para várias aplicações tais como rápido multiplexador óptico add-drop, atraso de grupo sintonizável de redes de Bragg, redes de Bragg com descolamento de fase sintonizáveis, método para a inscrição de redes de Bragg com perfis complexos, filtro sintonizável para equalização de ganho e filtros ópticos notch ajustáveis.
Resumo:
The Minho River, situated 30 km south of the Rias Baixas is the most important freshwater source flowing into the Western Galician Coast (NW of the Iberian Peninsula). This discharge is important to determine the hydrological patterns adjacent to its mouth, particularly close to the Galician coastal region. The buoyancy generated by the Minho plume can flood the Rias Baixas for long periods, reversing the normal estuarine density gradients. Thus, it becomes important to analyse its dynamics as well as the thermohaline patterns of the areas affected by the freshwater spreading. Thus, the main aim of this work was to study the propagation of the Minho estuarine plume to the Rias Baixas, establishing the conditions in which this plume affects the circulation and hydrographic features of these coastal systems, through the development and application of the numerical model MOHID. For this purpose, the hydrographic features of the Rias Baixas mouths were studied. It was observed that at the northern mouths, due to their shallowness, the heat fluxes between the atmosphere and ocean are the major forcing, influencing the water temperature, while at the southern mouths the influence of the upwelling events and the Minho River discharge were more frequent. The salinity increases from south to north, revealing that the observed low values may be caused by the Minho River freshwater discharge. An assessment of wind data along the Galician coast was carried out, in order to evaluate the applicability of the study to the dispersal of the Minho estuarine plume. Firstly, a comparative analysis between winds obtained from land meteorological stations and offshore QuikSCAT satellite were performed. This comparison revealed that satellite data constitute a good approach to study wind induced coastal phenomena. However, since the numerical model MOHID requires wind data with high spatial and temporal resolution close to the coast, results of the forecasted model WRF were added to the previous study. The analyses revealed that the WRF model data is a consistent tool to obtain representative wind data near the coast, showing good results when comparing with in situ wind observations from oceanographic buoys. To study the influence of the Minho buoyant discharge influence on the Rias Baixas, a set of three one-way nested models was developed and implemented, using the numerical model MOHID. The first model domain is a barotropic model and includes the whole Iberian Peninsula coast. The second and third domains are baroclinic models, where the second domain is a coarse representation of the Rias Baixas and adjacent coastal area, while the third includes the same area with a higher resolution. A bi-dimensional model was also implemented in the Minho estuary, in order to quantify the flow (and its properties) that the estuary injects into the ocean. The chosen period for the Minho estuarine plume propagation validation was the spring of 1998, since a high Minho River discharge was reported, as well as favourable wind patterns to advect the estuarine plume towards the Rias Baixas, and there was field data available to compare with the model predictions. The obtained results show that the adopted nesting methodology was successful implemented. Model predictions reproduce accurately the hydrodynamics and thermohaline patterns on the Minho estuary and Rias Baixas. The importance of the Minho river discharge and the wind forcing in the event of May 1998 was also studied. The model results showed that a continuous moderate Minho River discharge combined with southerly winds is enough to reverse the Rias Baixas circulation pattern, reducing the importance of the occurrence of specific events of high runoff values. The conditions in which the estuarine plume Minho affects circulation and hydrography of the Rias Baixas were evaluated. The numerical results revealed that the Minho estuarine plume responds rapidly to wind variations and is also influenced by the bathymetry and morphology of the coastline. Without wind forcing, the plume expands offshore, creating a bulge in front of the river mouth. When the wind blows southwards, the main feature is the offshore extension of the plume. Otherwise, northward wind spreads the river plume towards the Rias Baixas. The plume is confined close to the coast, reaching the Rias Baixas after 1.5 days. However, for Minho River discharges higher than 800 m3 s-1, the Minho estuarine plume reverses the circulation patterns in the Rias Baixas. It was also observed that the wind stress and Minho River discharge are the most important factors influencing the size and shape of the Minho estuarine plume. Under the same conditions, the water exchange between Rias Baixas was analysed following the trajectories particles released close to the Minho River mouth. Over 5 days, under Minho River discharges higher than 2100 m3 s-1 combined with southerly winds of 6 m s-1, an intense water exchange between Rias was observed. However, only 20% of the particles found in Ria de Pontevedra come directly from the Minho River. In summary, the model application developed in this study contributed to the characterization and understanding of the influence of the Minho River on the Rias Baixas circulation and hydrography, highlighting that this methodology can be replicated to other coastal systems.
Resumo:
The work presented in this Ph.D thesis was developed in the context of complex network theory, from a statistical physics standpoint. We examine two distinct problems in this research field, taking a special interest in their respective critical properties. In both cases, the emergence of criticality is driven by a local optimization dynamics. Firstly, a recently introduced class of percolation problems that attracted a significant amount of attention from the scientific community, and was quickly followed up by an abundance of other works. Percolation transitions were believed to be continuous, until, recently, an 'explosive' percolation problem was reported to undergo a discontinuous transition, in [93]. The system's evolution is driven by a metropolis-like algorithm, apparently producing a discontinuous jump on the giant component's size at the percolation threshold. This finding was subsequently supported by number of other experimental studies [96, 97, 98, 99, 100, 101]. However, in [1] we have proved that the explosive percolation transition is actually continuous. The discontinuity which was observed in the evolution of the giant component's relative size is explained by the unusual smallness of the corresponding critical exponent, combined with the finiteness of the systems considered in experiments. Therefore, the size of the jump vanishes as the system's size goes to infinity. Additionally, we provide the complete theoretical description of the critical properties for a generalized version of the explosive percolation model [2], as well as a method [3] for a precise calculation of percolation's critical properties from numerical data (useful when exact results are not available). Secondly, we study a network flow optimization model, where the dynamics consists of consecutive mergings and splittings of currents flowing in the network. The current conservation constraint does not impose any particular criterion for the split of current among channels outgoing nodes, allowing us to introduce an asymmetrical rule, observed in several real systems. We solved analytically the dynamic equations describing this model in the high and low current regimes. The solutions found are compared with numerical results, for the two regimes, showing an excellent agreement. Surprisingly, in the low current regime, this model exhibits some features usually associated with continuous phase transitions.
Resumo:
The development of a new instrument for the measurement of convective and radiative is proposed, based on the transient operation of a transpiration radiometer. Current transpiration radiometers rely on steady state temperature measurements in a porous element crossed by a know gas mass flow. As a consequence of the porous sensing element’s intrinsically high thermal inertia, the instrument’s time constant is in the order of several seconds. The proposed instrument preserves established advantages of transpiration radiometers while incorporating additional features that broaden its applicability range. The most important developments are a significant reduction of the instrument’s response time and the possibility of separating and measuring the convective and radiative components of the heat flux. These objectives are achieved through the analysis of the instrument’s transient response, a pulsed gas flow being used to induce the transient behavior.
Resumo:
In this work several techniques to monitor the performance of optical networks were developed. These techniques are dedicated either to the measurement of the data signal parameters (optical signal to noise ratio and dispersion) or to the detection of physical failures on the network infrastructure. The optical signal to noise ratio of the transmitted signal was successfully monitored using methods based on the presence of Bragg gratings imprinted on high birefringent fibres that allowed the distinction of the signal from the noise due to its polarization properties. The monitoring of the signal group-velocity dispersion was also possible. In this case, a method based on the analysis of the electric spectrum of the signal was applied. It was experimentally demonstrated that this technique is applicable on both amplitude and phase modulated signals. It was also developed a technique to monitor the physical infrastructure of an optical access network. Once again, the application of Bragg gratings (this time imprinted on standard single mode fibres) was the basis of the developed method.
Resumo:
Silver nanoparticles (AgNP) have been produced and applied in a variety of products ranging from personal care products to food package containers, clothing and medicine utilities. The antimicrobial function of AgNP makes it very useful to be applied for such purposes. Silver (Ag) is a non-essential metal for organisms, and it has been historically present in the environment at low concentrations. Those concentrations of silver increased in the last century due to the use of Ag in the photographic industry and lately are expected to increase due to the use of AgNPs in consumer products. The presence of AgNP in the aquatic environment may pose a risk for aquatic species, and the effects can vary from lethal to sublethal effects. Moreover, the contact of aquatic organisms with AgNP may not cause immediately the death of individuals but it can be accumulated inside the animals and consequently transferred within the food chain. Considering this, the objective of this work was to study the transfer of silver nanoparticles in comparison to silver ions, which was used as silver nitrate, within an aquatic food chain model. To achieve this goal, this study was divided into four steps: the toxicity assessment of AgNP and AgNO3 to aquatic test-species, the bioaccumulation assessment of AgNP and AgNO3 by Pseudokirchneriella subcapitata and Daphnia magna under different exposure scenarios, and finally the evaluation of the trophic transfer of Ag through an experimental design that included the goldfish Carassius auratus in a model trophic chain in which all the species were exposed to the worse-case scenario. We observed that the bioconcentration of Ag by P. subcapitata is mainly driven by ionic silver, and that algae cannot internalize these AgNPs, but it does internalizes dissolved Ag. Daphnia magna was exposed to AgNP and AgNO3 through different exposure routes: water, food and both water and food. The worse-case scenario for Daphnia Ag bioaccumulation was by the joint exposure of contaminated water and food, showing that Ag body burdens were higher for AgNPs than for AgNO3. Finally, by exposing C. auratus for 10 days through contaminated water and food (supplied as D. magna), with another 7 days of depuration phase, it was concluded that the 10 days of exposure were not enough for fish to reach a plateau on Ag internal concentration, and neither the 7 days of elimination were sufficient to cause total depuration of the accumulated Ag. Moreover, a higher concentration of Ag was found in the intestine of fish when compared with other organs, and the elimination rate constant of AgNP in the intestine was very low. Although a potential for trophic transfer of AgNP cannot be suggested based in the data acquired in this study, there is still a potential environmental risk for aquatic species.
Resumo:
O presente trabalho visa discutir a relação entre a abordagem Orff-Schulwerk e o desenvolvimento do ‘Eu Musical’ em contexto de Educação Musical no 2.º Ciclo do Ensino Básico genérico português. Na tentativa de verificar, analisar e tentar compreender esta relação, o processo empírico fundamentou-se na Flow Theory, desenvolvida por Mihaly Csikszentmihalyi. O enquadramento teórico conduziu à elaboração do ‘Modelo Multidimensional de Eu Musical’ (‘MoMEuM’), o qual, partindo da abordagem Orff-Schulwerk, procurou bases epistemológicas na Flow Theory, nas vertentes Cultural, Social e Positiva da Psicologia, bem como no Embodiment. A componente empírica do estudo teve como base metodológica a investigação-ação. Nesse sentido, o professor-investigador acompanhou, de forma longitudinal, o percurso de 50 alunos no referido contexto e procurou verificar, através do FIMA - Flow Indicators in Musical Activity, a vivência de ‘experiências ótimas/estados de fluxo’ em atividades/estratégias pedagógicomusicais baseadas na abordagem Orff-Schulwerk e, por conseguinte, no desenvolvimento do ‘Eu Musical’. A análise e interpretação de dados sugere que a abordagem Orff-Schulwerk promove a ocorrência de ‘experiências ótimas/estados de fluxo’ e, no quadro do presente estudo, impulsiona o desenvolvimento do ‘Eu Musical’.
Resumo:
The high dependence of Portugal from foreign energy sources (mainly fossil fuels), together with the international commitments assumed by Portugal and the national strategy in terms of energy policy, as well as resources sustainability and climate change issues, inevitably force Portugal to invest in its energetic self-sufficiency. The 20/20/20 Strategy defined by the European Union defines that in 2020 60% of the total electricity consumption must come from renewable energy sources. Wind energy is currently a major source of electricity generation in Portugal, producing about 23% of the national total electricity consumption in 2013. The National Energy Strategy 2020 (ENE2020), which aims to ensure the national compliance of the European Strategy 20/20/20, states that about half of this 60% target will be provided by wind energy. This work aims to implement and optimise a numerical weather prediction model in the simulation and modelling of the wind energy resource in Portugal, both in offshore and onshore areas. The numerical model optimisation consisted in the determination of which initial and boundary conditions and planetary boundary layer physical parameterizations options provide wind power flux (or energy density), wind speed and direction simulations closest to in situ measured wind data. Specifically for offshore areas, it is also intended to evaluate if the numerical model, once optimised, is able to produce power flux, wind speed and direction simulations more consistent with in situ measured data than wind measurements collected by satellites. This work also aims to study and analyse possible impacts that anthropogenic climate changes may have on the future wind energetic resource in Europe. The results show that the ECMWF reanalysis ERA-Interim are those that, among all the forcing databases currently available to drive numerical weather prediction models, allow wind power flux, wind speed and direction simulations more consistent with in situ wind measurements. It was also found that the Pleim-Xiu and ACM2 planetary boundary layer parameterizations are the ones that showed the best performance in terms of wind power flux, wind speed and direction simulations. This model optimisation allowed a significant reduction of the wind power flux, wind speed and direction simulations errors and, specifically for offshore areas, wind power flux, wind speed and direction simulations more consistent with in situ wind measurements than data obtained from satellites, which is a very valuable and interesting achievement. This work also revealed that future anthropogenic climate changes can negatively impact future European wind energy resource, due to tendencies towards a reduction in future wind speeds especially by the end of the current century and under stronger radiative forcing conditions.
Resumo:
In this work physical and behavioral models for a bulk Reflective Semiconductor Optical Amplifier (RSOA) modulator in Radio over Fiber (RoF) links are proposed. The transmission performance of the RSOA modulator is predicted under broadband signal drive. At first, the simplified physical model for the RSOA modulator in RoF links is proposed, which is based on the rate equation and traveling-wave equations with several assumptions. The model is implemented with the Symbolically Defined Devices (SDD) in Advanced Design System (ADS) and validated with experimental results. Detailed analysis regarding optical gain, harmonic and intermodulation distortions, and transmission performance is performed. The distribution of the carrier and Amplified Spontaneous Emission (ASE) is also demonstrated. Behavioral modeling of the RSOA modulator is to enable us to investigate the nonlinear distortion of the RSOA modulator from another perspective in system level. The Amplitude-to-Amplitude Conversion (AM-AM) and Amplitude-to-Phase Conversion (AM-PM) distortions of the RSOA modulator are demonstrated based on an Artificial Neural Network (ANN) and a generalized polynomial model. Another behavioral model based on Xparameters was obtained from the physical model. Compensation of the nonlinearity of the RSOA modulator is carried out based on a memory polynomial model. The nonlinear distortion of the RSOA modulator is reduced successfully. The improvement of the 3rd order intermodulation distortion is up to 17 dB. The Error Vector Magnitude (EVM) is improved from 6.1% to 2.0%. In the last part of this work, the performance of Fibre Optic Networks for Distributed and Extendible Heterogeneous Radio Architectures and Service Provisioning (FUTON) systems, which is the four-channel virtual Multiple Input Multiple Output (MIMO), is predicted by using the developed physical model. Based on Subcarrier Multiplexing (SCM) techniques, four-channel signals with 100 MHz bandwidth per channel are generated and used to drive the RSOA modulator. The transmission performance of the RSOA modulator under the broadband multi channels is depicted with the figure of merit, EVM under di erent adrature Amplitude Modulation (QAM) level of 64 and 254 for various number of Orthogonal Frequency Division Multiplexing (OFDM) subcarriers of 64, 512, 1024 and 2048.
Resumo:
K0.5Na0.5NbO3 (KNN), is the most promising lead free material for substituting lead zirconate titanate (PZT) which is still the market leader used for sensors and actuators. To make KNN a real competitor, it is necessary to understand and to improve its properties. This goal is pursued in the present work via different approaches aiming to study KNN intrinsic properties and then to identify appropriate strategies like doping and texturing for designing better KNN materials for an intended application. Hence, polycrystalline KNN ceramics (undoped, non-stoichiometric; NST and doped), high-quality KNN single crystals and textured KNN based ceramics were successfully synthesized and characterized in this work. Polycrystalline undoped, non-stoichiometric (NST) and Mn doped KNN ceramics were prepared by conventional ceramic processing. Structure, microstructure and electrical properties were measured. It was observed that the window for mono-phasic compositions was very narrow for both NST ceramics and Mn doped ceramics. For NST ceramics the variation of A/B ratio influenced the polarization (P-E) hysteresis loop and better piezoelectric and dielectric responses could be found for small stoichiometry deviations (A/B = 0.97). Regarding Mn doping, as compared to undoped KNN which showed leaky polarization (P-E) hysteresis loops, B-site Mn doped ceramics showed a well saturated, less-leaky hysteresis loop and a significant properties improvement. Impedance spectroscopy was used to assess the role of Mn and a relation between charge transport – defects and ferroelectric response in K0.5Na0.5NbO3 (KNN) and Mn doped KNN ceramics could be established. At room temperature the conduction in KNN which is associated with holes transport is suppressed by Mn doping. Hence Mn addition increases the resistivity of the ceramic, which proved to be very helpful for improving the saturation of the P-E loop. At high temperatures the conduction is dominated by the motion of ionized oxygen vacancies whose concentration increases with Mn doping. Single crystals of potassium sodium niobate (KNN) were grown by a modified high temperature flux method. A boron-modified flux was used to obtain the crystals at a relatively low temperature. XRD, EDS and ICP analysis proved the chemical and crystallographic quality of the crystals. The grown KNN crystals exhibit higher dielectric permittivity (29,100) at the tetragonal-to-cubic phase transition temperature, higher remnant polarization (19.4 μC/cm2) and piezoelectric coefficient (160 pC/N) when compared with the standard KNN ceramics. KNN single crystals domain structure was characterized for the first time by piezoforce response microscopy. It could be observed that <001> - oriented potassium sodium niobate (KNN) single crystals reveal a long range ordered domain pattern of parallel 180° domains with zig-zag 90° domains. From the comparison of KNN Single crystals to ceramics, It is argued that the presence in KNN single crystal (and absence in KNN ceramics) of such a long range order specific domain pattern that is its fingerprint accounts for the improved properties of single crystals. These results have broad implications for the expanded use of KNN materials, by establishing a relation between the domain patterns and the dielectric and ferroelectric response of single crystals and ceramics and by indicating ways of achieving maximised properties in KNN materials. Polarized Raman analysis of ferroelectric potassium sodium niobate (K0.5Na0.5)NbO3 (KNN) single crystals was performed. For the first time, an evidence is provided that supports the assignment of KNN single crystals structure to the monoclinic symmetry at room temperature. Intensities of A′, A″ and mixed A′+A″ phonons have been theoretically calculated and compared with the experimental data in dependence of crystal rotation, which allowed the precise determination of the Raman tensor coefficients for (non-leaking) modes in monoclinic KNN. In relation to the previous literature, this study clarifies that assigning monoclinic phase is more suitable than the orthorhombic one. In addition, this study is the basis for non-destructive assessments of domain distribution by Raman spectroscopy in KNN-based lead-free ferroelectrics with complex structures. Searching a deeper understanding of the electrical behaviour of both KNN single crystal and polycrystalline materials for the sake of designing optimized KNN materials, a comparative study at the level of charge transport and point defects was carried out by impedance spectroscopy. KNN single crystals showed lower conductivity than polycrystals from room temperature up to 200 ºC, but above this temperature polycrystalline KNN displays lower conductivity. The low temperature (T < 200 ºC) behaviour reflects the different processing conditions of both ceramics and single crystals, which account for less defects prone to charge transport in the case of single crystals. As temperature increases (T > 200 ºC) single crystals become more conductive than polycrystalline samples, in which grain boundaries act as barriers to charge transport. For even higher temperatures the conductivity difference between both is increased due to the contribution of ionic conduction in single crystals. Indeed the values of activation energy calculated to the high temperature range (T > 300 ºC) were 1.60 and 0.97 eV, confirming the charge transport due to ionic conduction and ionized oxygen vacancies in single crystals and polycrystalline KNN, respectively. It is suggested that single crystals with low defects content and improved electromechanical properties could be a better choice for room temperature applications, though at high temperatures less conductive ceramics may be the choice, depending on the targeted use. Aiming at engineering the properties of KNN polycrystals towards the performance of single crystals, the preparation and properties study of (001) – oriented (K0.5Na0.5)0.98Li0.02NbO3 (KNNL) ceramics obtained by templated grain growth (TGG) using KNN single crystals as templates was undertaken. The choice of KNN single crystals templates is related with their better properties and to their unique domain structure which were envisaged as a tool for templating better properties in KNN ceramics too. X-ray diffraction analysis revealed for the templated ceramics a monoclinic structure at room temperature and a Lotgering factor (f) of 40% which confirmed texture development. These textured ceramics exhibit a long range ordered domain pattern consisting of 90º and 180º domains, similar to the one observed in the single crystals. Enhanced dielectric (13017 at TC), ferroelectric (2Pr = 42.8 μC/cm2) and piezoelectric (d33 = 280 pC/N) properties are observed for textured KNNL ceramics as compared to the randomly oriented ones. This behaviour is suggested to be due to the long range ordered domain patterns observed in the textured ceramics. The obtained results as compared with the data previously reported on texture KNN based ceramics confirm that superior properties were found due to ordered repeated domain pattern. This study provides an useful approach towards properties improvement of KNN-based piezoelectric ceramics. Overall, the present results bring a significant contribution to the pool of knowledge on the properties of sodium potassium niobate materials: a relation between the domain patterns and di-, ferro-, and piezo-electric response of single crystals and ceramics was demonstrated and ways of engineering maximised properties in KNN materials, for example by texturing were established. This contribution is envisaged to have broad implications for the expanded use of KNN over the alternative lead-based materials.
Resumo:
Optical networks are under constant evolution. The growing demand for dynamism require devices that can accommodate different types of traffic. Thus the study of transparent optical networks arises. This approach makes optical networks more "elegant" , due to a more efficient use of network resources. In this thesis, the author proposes devices that intend to form alternative approaches both in the state of art of these same technologies both in the fitting of this technologies in transparent optical networks. Given that full transparency is difficult to achieve with current technology (perhaps with more developed optical computing this is possible), the author proposes techniques with different levels of transparency. On the topic of performance of optical networks, the author proposes two techniques for monitoring chromatic dispersion with different levels of transparency. In Chapter 3 the proposed technique seems to make more sense for long-haul optical transmission links and high transmission rates, not only due to its moderate complexity but also to its potential moderate/high cost. However it is proposed to several modulation formats, particularly those that have a protruding clock component. In Chapter 4 the transparency level was not tested for various modulation formats, however some transparency is achieved by not adding any electrical device after the receiver (other than an analog-digital converter). This allows that this technique can operate at high transmission rates in excess of 100 Gbit / s, if electro-optical asynchronous sampling is used before the optical receiver. Thus a low cost and low bandwidth photo-detector can be used. In chapter 5 is demonstrated a technique for simultaneously monitoring multiple impairments of the optical network by generating novel performance analysis diagrams and by use of artificial neural networks. In chapter 6 the author demonstrates an all-optical technique for controlling the optical state of polarization and an example of how all-optical signal processing can fully cooperate with optical performance monitoring.
Resumo:
Portugal has strong musical traditions, which have been perpetrated by decades through folkloristic activities. In folk groups from Alto Minho (north of Portugal), folk singing is mostly performed by cantadeiras, amateur female solo singers who learn this style orally. Their vocal characteristics are distinctive when compared with other regions of the country; however, deep understanding of these vocal practices is still missing. The present work aims at studying Alto Minho cantadeira’s vocal performance in a multidimensional perspective, envisioning social, cultural and physiological understanding of this musical style. Thus, qualitative and quantitative data analyses were carried out, to: (i) describe current performance practices, (ii) explore existent perceptions about most relevant voice features in this region, (iii) investigate physiological and acoustic properties of this style, and (iv) compare this style of singing with other non-classical singing styles of other countries. Dataset gathered involved: 78 groups whose members were telephone interviewed, 13 directors who were asked to fill in a questionnaire on performance practices, 1 cantadeira in a pilot study, 16 cantadeiras in preliminary voice recordings, 77 folk group members in listening tests, and 10 cantadeiras in multichannel recordings, including audio, ELG, air flow and intra-oral pressure signals. Data were analysed through thematic content analysis, descriptive and inferential statistics, hierarchical principal components, and multivariate linear regression models. Most representative voices have a high pitched and loud voice, with a bright timbre, predominance of chest register without excessive effort, and good text intelligibility with regional accent. High representativeness levels were obtained by few cantadeiras; these sing with high levels of subglottal pressure and vocal fold contact quotient, predominance of high spectrum energy and vocal loudness, corroborating indications of prevalence of pressed phonation. These vocal characteristics resemble belting in musical theatre and share similarities with country (USA) and ojikanje (Croatia) singing. Strategies that may contribute to the preservation of this type of singing and the vocal health of current cantadeiras are discussed, pointing at the direction of continuous education among folk groups, following practices that are already adopted elsewhere in Europe.
Resumo:
Cell cycle and differentiation are two highly coordinated processes during organ development. Recent studies have demonstrated that core cell cycle regulators also play cell cycle-independent functions in post-mitotic neurons, and are essential for the maintenance of neuronal homeostasis. CDC25 phosphatases are well-established CDK activators and their activity is mainly associated to proliferating tissues. The expression and activity of mammalian CDC25s has been reported in adult brains. However, their physiological relevance and the potential substrates in a non-proliferative context have never been addressed. string (stg) encodes the Drosophila CDC25 homolog. Previous studies from our group showed that stg is expressed in photoreceptors (PRs) and in lamina neurons, which are two differentiated cell types that compose the fly visual system. The aims of this work are to uncover the function of stg and to identify its potential neuronal substrates, using the Drosophila visual system as a model. To gain insight into the function of stg in a non-dividing context we used the GAL4/UAS system to promote downregulation of stg in PR-neurons, through the use of an RNAi transgene. The defects caused by stg loss-of-function were evaluated in the developing eye imaginal disc by immunofluorescence, and during adult stages by scanning electron microscopy. This genetic approach was combined with a specific proteomic method, two-dimensional difference gel electrophoresis (2D-DIGE), to identify the potential substrates in PR-cells. Our results showed that stg downregulation in PRs affects the well-patterned retina organization, inducing the loss of apical maintenance of PR-nuclei on the eye disc, and ommatidia disorganization. We also detected an abnormal accumulation of cytoskeletal proteins and a disruption of the axon structure. As a consequence, the projection of PR-axons into the lamina and medulla neuropils of the optic lobe was impaired. Upon stg downregulation, we also detected that PR-cells accumulate Cyclin B. Although the rough eye phenotype observed upon stg downregulation suggests neurodegeneration, we did not detect neuronal death during larval stages, suggesting that it likely occurs during pupal stages or during adulthood. By 2D-DIGE, we identified seven proteins which were differentially expressed upon stg downregulation, and are potential neuronal substrates of Stg. Altogether, our observations suggest that Stg phosphatase plays an essential role in the Drosophila visual system neurons, regulating several cell components and processes in order to ensure their homeostasis.